Analytic density matrices
 in relativistic coupled cluster theory

A. V. Oleynichenko ${ }^{1}$
L. V. Skripnikov ${ }^{1,2}$, A. V. Zaitsevskii ${ }^{2,3}$
${ }^{1}$ NRC "Kurchatov Institute" - PNPI, Gatchina
${ }^{1,2}$ Saint Petersburg State University, Saint Petersburg
2,3 Lomonosov Moscow State University, Department of Chemistry, Moscow
oleynichenko_av@pnpi.nrcki.ru qchem pnpispb.ru

28th July, 2022

Bibliography

[1] T. Helgaker, P. Jorgensen, J. Olsen
Molecular Electronic-Structure Theory
John Wiley \& Sons, Ltd, 2000
[2] I. Shavitt, R. J. Bartlett
Many-Body Methods in Chemistry and Physics. MBPT and Coupled-Cluster Theory Cambridge University Press, 2009
[3] J. D. Watts, J. Gauss, R. J. Bartlett
Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree-Fock and other general single determinant reference functions. Energies and analytical gradients
J. Chem. Phys. 98(11), 8718 (1993)
[4] A. Shee, L. Visscher, T. Saue
Analytic one-electron properties at the 4-component relativistic coupled cluster level with inclusion of spin-orbit coupling
J. Chem. Phys. 145(18), 184107 (2016)

Calculation of properties

- one-electron property operator:

$$
\hat{O}=\sum_{p q} O_{p q} a_{p}^{\dagger} a_{q}
$$

- expectation value in the state Ψ :

$$
\langle O\rangle=\langle\Psi| \hat{O}|\Psi\rangle
$$

- property via numerical differentiation:

$$
\begin{gathered}
\hat{H}^{\prime}=\hat{H}+\lambda \hat{O} \\
\langle O\rangle=\frac{d E}{d \lambda}
\end{gathered}
$$

Density matrix

- one-particle density matrix of the N-electron system:

$$
\begin{gathered}
\gamma\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=N \int \boldsymbol{\Psi}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{N}\right) \Psi^{*}\left(\boldsymbol{r}_{1}^{\prime}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{N}\right) d \boldsymbol{r}_{2} \ldots d \boldsymbol{r}_{N} \\
\gamma\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\sum_{p q} D_{p q} \psi_{p}^{*}\left(\boldsymbol{r}^{\prime}\right) \psi_{q}(\boldsymbol{r})
\end{gathered}
$$

- matrix elements $D_{p q}$:

$$
D_{p q}=\langle\Psi| a_{p}^{\dagger} a_{q}|\Psi\rangle
$$

in the basis of molecular spinors $\left\{\psi_{p}(r)\right\}_{1}^{N}$
square $N \times N$ matrix

- formula for expectation values:

$$
\langle O\rangle=\int O(\boldsymbol{r}) \gamma(\boldsymbol{r}, \boldsymbol{r}) d \boldsymbol{r}=\sum_{p q} D_{p q} O_{p q}
$$

Coupled cluster theory

Cluster operator

Single excitations:

$$
T_{1}=\sum_{i a} t_{i}^{a}\left\{a_{a}^{\dagger} a_{i}\right\}
$$

$$
i \Downarrow<\underline{Q}
$$

Double excitations:

$$
T_{2}=\frac{1}{4} \sum_{i j a b} t_{i j}^{a b}\left\{a_{a}^{\dagger} a_{i} a_{b}^{\dagger} a_{j}\right\}
$$

Coupled cluster theory

Energy and CC amplitude equations

- Exact wavefunction:

$$
|\Psi\rangle=e^{T}\left|\Phi_{0}\right\rangle
$$

- Bloch equation:

$$
H|\Psi\rangle=E|\Psi\rangle \quad \Rightarrow \quad\left(H e^{T}\right)_{c}\left|\Phi_{0}\right\rangle=E_{\text {corr }}\left|\Phi_{0}\right\rangle
$$

$\left(\mathrm{He}^{T}\right)_{c}=$ only connected diagrams
$E=E_{H F}+E_{\text {corr }}$

- Projection onto $\left\langle\Phi_{0}\right| \Rightarrow$ expression for correlation energy:

$$
E_{c o r r}=\left\langle\Phi_{0}\right|\left(H e^{T}\right)_{c}\left|\Phi_{0}\right\rangle
$$

- Projection onto $\left\langle\Phi_{i}^{a}\right|,\left\langle\Phi_{i j}^{a b}\right| \Rightarrow$ amplitude equations (CCSD):

$$
\left\{\begin{array}{l}
\left\langle\Phi_{i}^{a}\right|\left(H e^{T}\right)_{c}\left|\Phi_{0}\right\rangle=0 \\
\left\langle\Phi_{i j}^{a b}\right|\left(H e^{T}\right)_{c}\left|\Phi_{0}\right\rangle=0
\end{array}\right.
$$

CC energy functional

Problem:
CC theory isn't variational \Rightarrow Hellmann-Feynman theorem doesn't work

$$
\langle O\rangle=\frac{d E}{d \lambda} \neq\langle\Psi| \frac{d H}{d \lambda}|\Psi\rangle
$$

how to avoid differentiation of t amplitudes?

Solution: Lagrange method

$$
\mathcal{L}=\underbrace{\left\langle\Phi_{0}\right|\left(H e^{T}\right)_{c}\left|\Phi_{0}\right\rangle}_{E_{\text {corr }}}+\sum_{l} \lambda_{I} \underbrace{\left\langle\Phi_{l}\right|\left(H e^{T}\right)_{c}\left|\Phi_{0}\right\rangle}_{\text {amplitude eqn-s }}
$$

λ_{I} - Lagrange multipliers, $I=i j \ldots a b \ldots$
conditions: amplitude equations

De-excitation operator \wedge

Rewrite in a compact form:

$$
\begin{gathered}
\mathcal{L}=\left\langle\Phi_{0}\right|\left(H e^{T}\right)_{c}\left|\Phi_{0}\right\rangle+\sum_{l} \lambda_{l}\left\langle\Phi_{I}\right|\left(H e^{T}\right)_{c}\left|\Phi_{0}\right\rangle \\
\Rightarrow \\
\mathcal{L}=\left\langle\Phi_{0}\right|(1+\Lambda)\left(H e^{T}\right)_{c}\left|\Phi_{0}\right\rangle
\end{gathered}
$$

Within the CCSD model $\Lambda=\Lambda_{1}+\Lambda_{2}$:

$$
\begin{aligned}
& \Lambda_{1}=\sum_{i a} \lambda_{a}^{i}\left\{a_{i}^{\dagger} a_{a}\right\} \\
& i \not \subset a \\
& \Lambda_{2}=\frac{1}{4} \sum_{i j a b} \lambda_{a b}^{i j}\left\{a_{i}^{\dagger} a_{a} a_{j}^{\dagger} a_{b}\right\}
\end{aligned}
$$

Λ-equations for CCSD

$$
\mathcal{L}=\left\langle\Phi_{0}\right|\left(H e^{T}\right)_{c}\left|\Phi_{0}\right\rangle+\sum_{l} \lambda_{l}\left\langle\Phi_{l}\right|\left(H e^{T}\right)_{c}\left|\Phi_{0}\right\rangle
$$

- differentiation wrt $\lambda_{I} \Rightarrow$ we obtain amplitude equations:

$$
\left\langle\Phi_{I}\right|\left(H e^{T}\right)_{c}\left|\Phi_{0}\right\rangle=0
$$

- differentiation wrt $t_{l} \Rightarrow$ equations for λ_{l} (Λ-equations):

$$
\left\langle\Phi_{0}\right|\left(H e^{T}\right)_{c}+\Lambda\left(H e^{T}\right)_{c}-E_{\text {corr }}\left|\Phi_{l}\right\rangle=0
$$

- getting rid of $E_{\text {corr }}$:

$$
\left\langle\Phi_{0}\right|\left(H e^{T}\right)_{c}\left|\Phi_{I}\right\rangle+\left\langle\Phi_{0}\right|\left(\Lambda\left(H e^{T}\right)_{c}\right)_{c}\left|\Phi_{I}\right\rangle+\underbrace{\sum_{K}\left\langle\Phi_{0}\right|\left(H e^{T}\right)_{c}\left|\Phi_{K}\right\rangle\left\langle\Phi_{K}\right| \Lambda\left|\Phi_{I}\right\rangle}_{\text {disconnected diagrams }}=0
$$

- is linear in Λ, but the Jacobi method is more convenient to use
- number of floating-point operations: $O\left(N^{6}\right)$ for CCSD

Expression for density matrix elements (CCSD)

- Differentiation of \mathcal{L} wrt the perturbation parameter λ
- Orbital relaxation is neglected $\Rightarrow \frac{d T}{d \lambda}=0, \frac{d \Lambda}{d \lambda}=0$
- DM matrix elements:

$$
D_{p q}=\left\langle\Phi_{0}\right|(1+\Lambda)\left(\left\{a_{p}^{\dagger} a_{q}\right\} e^{T}\right)_{c}\left|\Phi_{0}\right\rangle
$$

hole-particle:
particle-particle:
hole-hole:

- CC density matrix is non-hermitian!

The CCSD (T) model

Estimate of triple excitation amplitudes

- algebraic expression for the T_{3} amplitudes:

$$
\varepsilon_{i j k}^{a b c} t_{i j k}^{a b c}=P(k / i j) P(a / b c) \sum_{d} t_{i j}^{a d}\langle b c \| d k\rangle-P(i / j k) P(c / a b) \sum_{m} t_{i m}^{a b}\langle m c \| j k\rangle
$$

- energy denominators:

$$
\varepsilon_{i j k}^{a b c}=\varepsilon_{i}+\varepsilon_{j}+\varepsilon_{k}-\varepsilon_{a}-\varepsilon_{b}-\varepsilon_{c}
$$

- permutation operators:

$$
P(i / j k)=1-P_{i j}-P_{i k}
$$

$-O\left(N^{7}\right)$ floating-poing operations, N - number of spinors

The CCSD (T) model

Perturbative energy correction

$$
E_{C C S D(T)}=E_{C C S D}+\underbrace{E_{T}+E_{S T}+E_{D T}}_{\Delta E(T)}
$$

- 4th order contribution of T_{3} (using the energy formula $\left.E=\left\langle\Phi_{0}\right|\left(e^{T^{\dagger}} H e^{T}\right)_{c}\left|\Phi_{0}\right\rangle\right):$
- T_{3} contributions to $T_{1} \Rightarrow$ energy correction:

$$
E_{S T}=\frac{1}{4} \sum_{i a}\left(t_{i}^{a}\right)^{*} \sum_{j k b c}\langle j k \| b c\rangle t_{i j k}^{a b c}
$$

- T_{3} contributions to $T_{2} \Rightarrow$ energy correction:

$$
E_{D T}=\frac{1}{4} \sum_{i j a b}\left(t_{i j}^{a b}\right)^{*} \sum_{k c} f_{k c} t_{i j k}^{a b c}
$$

Λ equations for $\operatorname{CCSD}(\mathrm{T})$

$$
\mathcal{L}=E_{C C S D}+\underbrace{E_{T}+E_{S T}+E_{D T}}_{\Delta E(T)}+\sum_{l} \lambda_{I}\left\langle\Phi_{I}\right|\left(H e^{T}\right)_{c}\left|\Phi_{0}\right\rangle
$$

Additional terms in CCSD \wedge equations:

$\varepsilon_{i j k}^{a b c} \times 4=4$

Expression for $\operatorname{CCSD}(\mathrm{T})$ density matrix elements

$$
\mathcal{L}=E_{C C S D}+\underbrace{E_{T}+E_{S T}+E_{D T}}_{\Delta E(T)}+\sum_{l} \lambda_{I}\left\langle\Phi_{I}\right|\left(H e^{T}\right)_{c}\left|\Phi_{0}\right\rangle
$$

- contribution to diagonal "hole-hole" $D_{i i}$:

- contribution to diagonal "particle-particle" $D_{a \mathrm{a}}$:

- contribution to off-diagonal "particle-hole" $D_{a i}$:

EXP-T program package

- open source project: qchem.pnpi.spb.ru/expt
- Kramers-unrestricted relativistic coupled cluster theory
- Fock-space MR-CC for open-shell problems
- CCSD, CCSD(T), CCSDT-1,2,3, CCSDT
- symmetry: $D_{2 h}$ and subgroups, $D_{\infty h}, C_{\infty v}$
- fast implementation of new models
- analytic density matrix for single-reference CCSD and CCSD(T)
- CC natural orbitals

Pilot application 1: contracted basis sets

Atomic natural orbitals (ANO)

- many atomic states are single-reference

$$
\Rightarrow \text { CCSD, } \operatorname{CCSD}(\mathrm{T}) \text { work well }
$$

- averaging of density matrices for several electronic states
- diagonalization of $\mathrm{DM} \Rightarrow$ natural orbitals (spinors)
- occupation number of ANO ~ its significance in the basis set
- effective and compact contracted basis sets

Example: Cs atom, averaging over six DMs:

P.-O. Widmark, P.-Å. Malmqvist, B. O. Roos, Theor. Chim. Acta, 77, 291 (1990)

Pilot application 1: contracted basis sets

Basis for low-lying states of cesium

$\left[\mathrm{cm}^{-1}\right]$	IP	$6 p P_{1 / 2}^{o}$	$6 p P_{3 / 2}^{o}$	$5 d D_{3 / 2}^{\circ}$	$5 d$
uncontracted	31466	11237	11787	14572	14670
deviation from uncontracted basis:					
ANO, scal-rel CCSD	-80	-52	-57	-29	-30
ANO, rel CCSD	-62	-41	-44	-13	-14
ANO, rel CCSD(T)	-75	-44	-48	-1	-5
exptl	31406	11178	11732	14499	14597

[^0]
Pilot application 2: shielding constant on Re in ReO_{4}^{-}

L. V. Skripnikov, S. D. Prosnyak. Refined nuclear magnetic dipole moment of rhenium: ${ }^{187} \mathrm{Re}$ and ${ }^{187} \mathrm{Re}$. arXiv:2204.13015 [physics.atom-ph]

- Shielding tensor can be formally defined as:

$$
\sigma_{i j}^{\mathrm{Re}}=\frac{\partial^{2} E}{\partial B_{i} \partial \mu_{\mathrm{Re}, j}}
$$

- Perturbation 1: interaction with an external magnetic field

$$
H_{B}=\frac{1}{2} \boldsymbol{B} \cdot\left[\left(\boldsymbol{r}-\boldsymbol{R}_{O}\right) \times \boldsymbol{\alpha}\right]
$$

(R_{O} - origin of coordinates)

- Perturbation 2: magnetic dipole hyperfine interaction

$$
H_{\mathrm{hf}}=\boldsymbol{\mu}_{\mathrm{Re}} \cdot \frac{\left[\left(\boldsymbol{r}-\boldsymbol{R}_{\mathrm{Re}}\right) \times \boldsymbol{\alpha}\right]}{\left|\boldsymbol{r}-\boldsymbol{R}_{\mathrm{Re}}\right|^{3}}
$$

Pilot application 2: shielding constant on Re in ReO_{4}^{-}

L. V. Skripnikov, S. D. Prosnyak. Refined nuclear magnetic dipole moment of rhenium: ${ }^{187} \operatorname{Re}$ and ${ }^{187} \operatorname{Re}$. arXiv:2204.13015 [physics.atom-ph]

- Operators $H_{B}, H_{\text {hf }}$ are T-odd
 \Rightarrow analytic DMs in DIRAC cannot be used
- "paramagnetic" contribution to σ \Rightarrow contribution from positive-energy spectrum
- CCSD model, 710 spinors
- numerical 2nd derivative (finite-diff method):

$$
\sigma=3678 \mathrm{ppm}
$$

- analytic $\langle\Psi| H_{B}|\Psi\rangle+$ numerical 1st derivative $\sigma=3675 \mathrm{ppm}$
- finite-difference method: max 2nd derivatives
- analytic DM + numerical differentiation:

3rd derivatives of energy \Rightarrow hyperpolarizabilities, ...

Further plans

- code optimization
\Rightarrow especially for CCSD(T)
- analytic density matrices for CCSDT
- analytic DMs for FS-RCC in non-trivial sectors
- basis sets for generalized relativistic pseudopotentials (GRPP) \Rightarrow GRPP will become the "golden standard" of high-precision modeling
- calculation of different properties defined as 2nd and 3rd derivatives of energy
\Rightarrow shielding tensor, hyperpolarizability, P,T-odd properties, ...
- geometry gradients \Rightarrow optimization of defects in crystals
- GRPP analytic gradients

[^0]: All calculations are carried out using FS-CCSD
 Semilocal pseudopotential, 28e in core, no effective QED potential
 $4 s, 4 p, 4 d$ shells were frozen
 Uncontracted basis: (14s14p10d6f5g5h3i)
 Contracted basis: [7s8p7d4f3g2h1i]

