Developing tools for high-accuracy *ab initio* relativistic modeling of excited states and spectra of actinide molecules and impurity ions

A. V. Oleynichenko A. Zaitsevskii, L. V. Skripnikov, Yu. V. Lomachuk, N. S. Mosyagin, E. Eliav, A. V. Titov

NRC "Kurchatov Institute" - PNPI, Quantum physics and chemistry department

oleynichenko_av@pnpi.nrcki.ru http://qchem.pnpi.spb.ru

The XXVII International Scientific Conference of Young Scientists and Specialists (AYSS-2023) JINR, Dubna, 31st October, 2023

Introduction: the goals of relativistic quantum chemistry

- chemistry and spectroscopy of actinides and superheavy elements
- active laser media; sources of light; chromophores, luminophores
- ▶ searches for *P*,*T*-odd fundamental interactions (physics beyond the Standard model)
- thermodynamics, physical and chemical properties of actinide compounds
- ▶ fine structure effects in spectra of light elements; spin-forbidden transitions
- the Periodic table for the most heavy chemical elements
- optical and magnetic properties of *f*-element compounds
- laser cooling and assembly of cold molecules

>

a clear understanding of the experiment is impossible without a theoretical model! but: models for *d*- and *f*-elements have to be very complicated...

Electron correlation: coupled cluster theory

Wave function:

$$\psi_n = \{\exp(T)\} \ \tilde{\psi}_n$$
$$T = \sum_{pq...rs...} t_{pq...rs...} \{a_p^{\dagger} a_q^{\dagger} \dots a_s a_r\}$$

 $\begin{array}{l} T = \mbox{cluster operator} \\ t_{pq,\ldots,rs,\ldots} = \mbox{cluster amplitudes} \\ a_p^+, a_q = \mbox{creation and annihilation operators} \end{array}$

- The most effective account for electron correlation
- Computational complexity: time - min O(N⁶) memory - min O(N⁴)
- Relativistic calculations = complex arithmetic + low symmetry!

E. Eliav, A. Borschevsky, A. Zaitsevskii, A. V. Oleynichenko, U. Kaldor. Relativistic Fock-space Coupled Cluster Method: Theory and Recent Applications. *Reference Module in Chemistry, Molecular Sciences and Chemical Engineering* (2023).

Finite-order method to calculate property operator matrix elements

General idea:

$$\psi_n = \{\exp(T)\} \ ilde{\psi}_n pprox \left(1 + T + rac{T^2}{2}
ight) ilde{\psi}_n$$

> 2nd order approximation to an effective property operator \tilde{O} :

$$ilde{O} pprox \left(O + T^{\dagger}O + OT + rac{\{(T^{\dagger})^2\}}{2}O + T^{\dagger}OT + Orac{\{T^2\}}{2} - (T^{\dagger}T)_{cl}O
ight)_{cl,conn}$$

- Disconnected diagrams cancel each other
- Line intensities in absorption and emission spectra $\sim |\langle \psi_n | \hat{d} | \psi_m \rangle|^2$
- Error \leq 10% in calculated matrix elements
- The analogous approach was previously used in atomic calculations

B. K. Sahoo et al, J. Phys. B, 39(2), 355 (2005)
G. Gopakumar et al, Phys. Rev. A, 66(3), 032505 (2002)

A. Zaitsevskii, A. V. Oleynichenko, E. Eliav. Mol. Phys. e2236246 (2023)

Implementation of the relativistic coupled cluster theory: the EXP-T program package

The new program package EXP-T for coupled cluster calculations was developed at NRC "Kurchatov Institute" – PNPI

- electronic structure of atoms, molecules and defects in crystals
- Kramers-unrestricted relativistic coupled cluster theory
- open shells: Fock-space multireference coupled cluster
- CCSD, CCSD(T), CCSDT-1,2,3, CCSDT models
- analytic density matrices for single-reference CCSD and CCSD(T)
- molecular integrals are imported from the DIRAC package relativistic Hamiltonians: Schrödinger, Dirac-Coulomb(-Gaunt) DC(G), (generalized) pseudopotentials
- ▶ property calculations, e. g. transition dipole moments \rightarrow intensities in spectra
- fast and flexible implementation of new models

A. V. Oleynichenko, A. Zaitsevskii, E. Eliav, Commun. Comp. Inf. Sci. 1331, 375 (2020)

The EXP-T program package

aoleynichenko / EXP-T (Public)				ධ Notificat	ions Y Fork 1	☆ Star 10		
↔ Code ⊙ Issues 11 Pull requests	⊙ Actions 🗄 Projects 💿 Security	🖂 Insights						
	p master - p 2 branches 🔊 0 tag	gs Go	to file Code 🔹	About				
	aoleynichenko Create LICENSE	7f29faa 2 weeks a	go 🕥 58 commits	The EXP-T program package is designed for high-precision modeling				
	direct calculation of properties in the 0h1p and 0h2p sector		5 months ago	of molecular electronic structure using the relativistic Fock space				
	examples	direct calculation of properties in the 0h1p and 0h2p sectors	5 months ago	multireference coupled cluster method (FS-RCC). EXP-T is written from scratch				
	in openblas	testing with ctest + refactoring of CC iterative solution in all sectors	6 months ago	in the C99 programming language and				
	scripts	expt_spectrum.py script	2 months ago	is currently focused on Unix-like systems.				
	in src	expt_spectrum.py script	2 months ago	Readme				
	test 📔	expt_spectrum.py script	2 months ago	4 LGPL-2.1 license				
	CMakeLists.txt	expt_spectrum.py script	2 months ago	☆ 10 stars				
	LICENSE	Create LICENSE	2 weeks ago 2 watching 1 fork					
	C README.md	Update README.md	3 years ago					
	IE README.md		Releases No releases published					
	The EXP-T progra	am system						
	The EXP-T program package is desi the relativistic Fock space multirefe C99 programming language and is	igned for high-precision modeling of molecular electronic stru erence coupled cluster method (FS-RCC). EXP-T is written from : currently focused on Unix-like systems.	Packages No packages published					
	Webpage of the EXP-T project:			Languages				
	http://qchem.pnpi.spb.ru/expt			Fortran 48.2% Assembly 26.0%				

https://github.com/aoleynichenko/EXP-T

Pseudopotential operator as a part of relativistic Hamiltonian

- core electronic shells are replaced with the some potential Û acting on valence electrons (the Pauli principle is accounted for)
- the valence electrons are described by the Schrödinger equation:

$$\hat{H}^{RPP} = \sum_{i} \left(-rac{\Delta_{i}}{2} + \sum_{lpha} \left(-rac{z_{lpha}}{r_{lpha i}} + \hat{U}_{lpha}(i)
ight)
ight) + \sum_{i>j} rac{1}{r_{ij}}$$

i, j - sum over electrons

 α – sum over nucle

 z_{α} – effective charge of the atomic core α , $z_{\alpha} = Z_{\alpha} - N_{\text{inner core el-s}}$

> potential \hat{U} can effectively account for:

- scalar-relativistic effects
- spin-orbit interaction
- Breit interaction of electrons
- finite nuclear charge distribution (the Fermi model)
- QED contributions (electron self-energy + vacuum polarization)

The most accurate version of the method – generalized relativistic pseudopotential (GRPP)

Accuracy of the generalized relativistic pseudopotential (GRPP) model Vertical excitation energies of the UO_2 molecule; compared to the 4-component Dirac-Coulomb-Gaunt calculations

FS-RCCSD calculation: $UO_2^{2+}(0h0p) \rightarrow UO_2^+(0h1p) \rightarrow UO_2(0h2p)$ Main model space comprised the $\approx 7s5f, 5f^2, 6d5f, 7p5f$ configurations of U For details, see: A. V. Oleynichenko et al, *Symmetry*, 15, 197 (2023)

The libgrpp library for evaluation of molecular integrals of the GRPP operator over Gaussian basis functions

ARGOS	1981	scalrel. +	spin-orbit +	outercore _	open source +	written in Fortran
MOLGEP	1991	+	+	+	-	Fortran
Turbomole	2005	+	+	-	-	Fortran
libECP	2015	+	-	-	+	С
libecpint	2021	+	_	_	+	C++
libgrpp	2022	+	+	+	+	С

- **libgrpp** is written from scratch in C99
- no restrictions on maximum angular momenta of GRPP and basis functions
- analytic gradients of GRPP integrals
- libgrpp is available in the home version of DIRAC!

The libgrpp library for evaluation of molecular integrals of the GRPP operator over Gaussian basis functions

aoleynichenko	/libgrpp Public			C	Q Pin	0 * 🛱 Star 1 *	
↔ Code ⊙ Issues	11 Pull requests 💿 Actions 🖽	Projects 🖽 Wiki 🛈 Security 🗠	Insights 🛞 Settings				
	12 main - 12 1 branch 🚫 0 tags		Go to file Add file *	<> Code -	About	۹	
	aoleynichenko new license: LGPL		1cda3f6 yesterday	🕲 17 commits	A library for the evaluation of molecular integrals of the gener relativistic pseudopotential oper	ieralized	
	🖿 libgrpp	grpp gradients		3 weeks ago	over Gaussian functions		
	🛅 test	command-line args for test_libgrpp_c		3 weeks ago	C Readme		
	test_libgrpp_c	command-line args for test_libgrpp_c		3 weeks ago	截 LGPL-2.1 license		
	test_libgrpp_f90	overlap and nucattr integrals in the test p	programs	last month	☆ 1 star		
	🗅 .gitignore	command-line args for test_libgrpp_c		3 weeks ago	V 0 forks		
	CMakeLists.txt	grpp gradients		3 weeks ago			
	LICENSE	new license: LGPL		yesterday	Releases		
	C README.md	Update README.md		3 weeks ago	No releases published		
	= README.md			1	Create a new release		
					Packages		
	libgrpp		No packages published Publish your first package				
	A library for the evaluation of mole (GRPP) over Gaussian functions.	ecular integrals of the generalized rela	tivistic pseudopotential op	erator	Languages		

https://github.com/aoleynichenko/libgrpp

Library of relativistic pseudopotentials – by N. S. Mosyagin

Effective potentials and basis sets																		
Group #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																		
1	1 H																	2 He
2	з Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	•	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	⁸⁸ Ra	••	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
8	119	120																
* Lanthar	ides		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
** Actinid	es		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	
***			121	122	123													

http://qchem.pnpi.spb.ru/recp

Pilot applications

The ThO molecule as a pilot application

one of the most well-studied actinide molecules:

- experimental searches of the electron electric dipole moment
 - ACME Collaboration, Nature, 562, 355 (2018)
- term energies T_e and equilibrium distances r_e
- permanent dipole moments in ground and excited electronic states
- radiative lifetimes of excited electronic states
- previous works: Dirac-Coulomb Hamiltonian
 - \rightarrow the accuracy was acceptable for several low-lying states only
 - P. Tecmer, C. E. González-Espinoza, Phys. Chem. Chem. Phys. 20, 23424 (2018)
- ▶ our goal: all electronic states < 20000 cm⁻¹

Electronic states of the diatomic ThO molecule

Potential energy curves and equilibrium distances r_e

- Relativistic Hamiltonian: GRPP accounting for Breit and QED
- Ground state calculations: single-reference coupled cluster CCSD(T)
- Excited states: Fock space coupled cluster FS-CCSD

* P. Tecmer, C. E. González-Espinoza, Phys. Chem. Chem. Phys. 20, 23424 (2018)

Electronic states of the diatomic ThO molecule

Radiative lifetimes of excited states

* FS-RCCSD/RKR – potential energy curve for the ground state was constructed using the Rydberg-Klein-Rees method based on experimental data ^a D. G. Ang et al, Phys. Rev. A 106, 022808 (2022) ^b X. Wu et al, New J. Phys. 22, 023013 (2020)

^c N. R. Hutzler et al, Phys. Chem. Chem. Phys. 13, 18976 (2011) ^d D. L. Kokkin et al, Phys. Rev. A 91, 042508 (2015)

Ground electronic states of the UO_2 molecule and its ion UO_2^+ ; ionization potential calculation

	CASPT2ª DK, sc-rel	FS-CCSD GRPP	SR-CCSD GRPP	SR-CCSD(T) GRPP	Exptl.
IP, eV	6.17	5.799	5.947	6.062	6.128 ^b
r _e (UO ₂ ⁺), Å r _e (UO ₂), Å	1.771 1.806	1.731 1.760	1.737 1.774	1.753 1.790	1.758 ^c 1.790 ^c

^a L. Gagliardi et al, J. Phys. Chem. A, 105, 10602 (2001)

^c A. Kovacs, R. J. M. Konings J. Phys. Chem. A, 115, 6646 (2011)

$AcOH^+$ – the first prediction of a laser-coolable polyatomic ion

A promising system for a new generation of experiments searching for P, T-odd effects \Rightarrow searches for the New physics beyond the Standard model

A. V. Oleynichenko, L. V. Skripnikov, A. V. Zaitsevskii, V. V. Flambaum Phys. Rev. A, 105, 022825 (2022).

Spectroscopy of the AcF molecule: relativistic modeling makes spectroscopic experiment possible

 a promising object for the searches of the *P*,*T*-odd nuclear Schiff moment on ²²⁵Ac, ²²⁷Ac

L. V. Skripnikov et al, *PCCP* 22, 18374 (2020)

- Low-lying electronic states: 2 electrons over the closed-shell vacuum state (AcF²⁺)
- $ho~\sim$ 80 electronic states < 43000 cm $^{-1}$
- The most intense transitions were predicted
- The (8)1 state was experimentally observed at CRIS/ISOLDE (CERN)

L. V. Skripnikov, A. V. Oleynichenko, A. Zaitsevskii, N. S. Mosyagin, M. Athanasakis-Kaklamanakis, M. Au, G. Neyens. J. Chem. Phys., in press (2023)

Localized excitations on f-element ions Ce³⁺, Th³⁺ in xenotime YPO₄ crystals

- tetragonal crystal system, 14₁/amd
- local symmetry of the Y^{3+} site: D_{2d}
- natural xenotime contains Th and U impurities
- radiation resistant, no metamictization
- very wide bandgap (> 8.6 eV)
- YPO₄ doped with lanthanide ions:
 - laser active media, scintillators, luminophores ...
 - large amount of experimental data: YPO₄:Ce³⁺, YPO₄:Pr³⁺, YPO₄:Nd³⁺, YPO₄:Yb³⁺, ...
 - energy and charge transfer processes between lanthanide sites
- ► YPO₄ doped with actinide ions:
 - immobilization of highly radioactive waste
 - nuclear clock on the isomeric transition in ²²⁹Th

Xenotime crystal Locality: Novo Horizonte, Brazil

Minimal cluster model of an impurity center

CTEP = Compound-Tunable Effective Potential

Excitation energies and radiative lifetimes of excited states

- ▶ errors of order 0.2 0.3 eV
- ground state of Th^{3+} in crystal $6d^1$
- minimal cluster model calculations: FS RCCSD
- correction for the cluster model size: TD-DFTO
- the interplay of the crystal field and spin-orbit interaction

¹ Y. V. Lomachuk, D. A. Maltsev, N. S. Mosyagin, L. V. Skripnikov, R. V. Bogdanov, A. V. Titov, PCCP, 22, 17922 (2020)

Bibliography: generalized relativistic pseudopotentials

- N. S. Mosyagin, A. V. Titov, Z. Latajka, IJQC 63, 1107 (1997) Generalized relativistic effective core potential: Gaussian expansions of potentials and pseudospinors for atoms Hg through Rn
- A. V. Titov, N. S. Mosyagin, IJQC 71, 359 (1999) Generalized relativistic effective core potential: Theoretical grounds
- A. N. Petrov, N. S. Mosyagin, A. V. Titov, I. I. Tupitsyn, J. Phys. B 37, 4621 (2004) Accounting for the Breit interaction in relativistic effective core potential calculations of actinides
- N. S. Mosyagin, A. V. Zaitsevskii, A. V. Titov, IJQC, e26076 (2019) Generalized relativistic effective core potentials for superheavy elements
- A. Zaitsevskii, N. S. Mosyagin, A. V. Oleynichenko, E. Eliav, *IJQC*, e27077 (2022) Generalized relativistic small-core pseudopotentials accounting for quantum electrodynamic effects: Construction and pilot applications

A. V. Oleynichenko, A. Zaitsevskii, N. S. Mosyagin, A. N. Petrov, E. Eliav, A. V. Titov. Symmetry, 15, 197 (2023)

LIBGRPP: a library for the evaluation of molecular integrals of the generalized relativistic pseudopotential operator over Gaussian functions

Bibliography: relativistic coupled cluster theory

- A. Zaitsevskii, E. Eliav. IJQC, 118(23), e25772 (2018) Padé extrapolated effective Hamiltonians in the Fock space relativistic coupled cluster method.
- A. Zaitsevskii, N. S. Mosyagin, A. V. Oleynichenko, E. Eliav, *IJQC*, e27077 (2022) Generalized relativistic small-core pseudopotentials accounting for quantum electrodynamic effects: Construction and pilot applications
- A. V. Zaitsevskii, L. V. Skripnikov, A. V. Kudrin, A. V. Oleinichenko, E. Eliav, A. V. Stolyarov. Opt. Spectrosc. 124(4), 451 (2018)
 Electronic transition dipole moments in relativistic coupled-cluster theory: the finite-field method.
- A. V. Oleynichenko, A. Zaitsevskii, L. V. Skripnikov, E. Eliav. Symmetry, 12(7) (2020) Relativistic fock space coupled cluster method for many-electron systems: non-perturbative account for connected triple excitations.
- L. V. Skripnikov, A. V. Oleynichenko, A. V. Zaitsevskii, D. E. Maison, A. E. Barzakh. PRC, 104, 034316, (2021)

Relativistic Fock space coupled-cluster study of bismuth electronic structure to extract the Bi nuclear quadrupole moment.

E. Eliav, A. Borschevsky, A. Zaitsevskii, A. V. Oleynichenko, U. Kaldor. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier (2022) Relativistic Fock-space coupled cluster method: Theory and recent applications thanks to

M. G. Kozlov D. A. Maltsev A. N. Petrov

M. Athanasakis-Kaklamanakis M. Au A. Borschevsky V. V. Flambaum G. Neyens

Questions?

Appendix

How to assess an accuracy of GRPP?

Problem: taking into account QED and Breit in 4c calculations is extremely difficult

Solution: to construct a special GRPP for testing only (N. S. Mosyagin)

- + atomic Dirac-Hartree-Fock-Gaunt calculation (4c)
- + Gaussian nuclear charge distribution (instead of Fermi)
- retardation
- QED contributions

Reference 4c calculation: Dirac-Coulomb-Gaunt (DCG-x2cmmf)

more: J. Sikkema et al, J. Chem. Phys. 131, 124116 (2009); https://doi.org/10.1063/1.3239505

Correlation calculations:

- relativistic Fock space coupled cluster method (FS-RCCSD)
- intermediate Hamiltonian for incomplete model spaces (IH-IMMS)

A. Zaitsevskii et al, IJQC, e27077 (2022), https://doi.org/10.1002/qua.27077

the EXP-T program package

http://qchem.pnpi.spb.ru/expt

Example: uranium atom in the SCF approximation

Consider the 64e small core pseudopotential for the U atom:

- ▶ outercore shells: 6*sp*, 5*spd*, 4*spdf*
- ▶ valence shells: 7*sp*, 6*d*, 5*f*

Excitation energi	es, cm $^{-1}$					
$5f^36d^17s^2 \rightarrow$	DFB	no QED	point nuc.	no Breit	GRPP	semilocal
$5f^37s^27p^1$	7589	-72	-40	-93	-1	-6
$5f^36d^27s^1$	12990	133	96	78	2	1
$5f^36d^17s^17p^1$	17109	90	74	14	1	-9
$5f^26d^27s^2$	4809	-169	-85	-780	52	554
$5f^26d^27s^17p^1$	23920	-64	1	-765	53	546
$5f^47s^2$	15634	147	75	628	-44	-407
$5f^47s^17p^1$	30491	221	137	649	-45	-423
$5f^{1}6d^{3}7s^{2}$	31804	-354	-175	-1675	111	1238
$5f^{1}6d^{4}7s^{1}$	38957	-176	-49	-1552	113	1216

Excitation energies were derived from all-electron numerical SCF calculations for the states averaged over nonrelativistic configurations. Data by N. S. Mosyagin

Vertical excitation energies of ThO

FS-RCCSD calculation: ThO²⁺ (0*h*0*p*) → ThO⁺ (0*h*1*p*) → ThO (0*h*2*p*) Active space: 24 lowest virtual Kramers pairs of ThO²⁺ Main model space: CAS 2e / 12 spinors, ≈ 7s + 6d Th Basis sets: [19s17*p*15*d*15*f*5*g*4*h*3*]* (Th), aug-cc-pVQZ-DK (O)

Summary

Deviation from the 4-component Dirac-Coulomb-Gaunt model:

		GRPP	semilocal	DC	Ret.+QED
ThO	max abs	46	335	802	212
	rms	29	181	341	151
UO_2	max abs	110	345	767	142
	rms	51	128	316	112

- the error of GRPP is balanced for all electronic states
- ▶ the Dirac-Coulomb Hamiltonian is inherently less accurate than even a semi-local potential
- ▶ the contributions of retardation and QED effects are greater than the error of GRPP
- our future: pseudopotentials accounting for QED

GRPP seems to be the most precise Hamiltonian for real-life molecular calculations?