libgrecp

библиотека подпрограмм для вычисления интегралов от оператора обобщенного релятивистского псевдопотенциала на гауссовых функциях

А. В. Олейниченко А. В. Зайцевский

oleynichenko_av@pnpi.nrcki.ru http://qchem.pnpi.spb.ru

23 декабря 2021 г.

Литература: GRECP generalized relativistic effective core potential

- N. S. Mosyagin, A. V. Titov, Z. Latajka, IJQC 63, 1107 (1997) Generalized relativistic effective core potential: Gaussian expansions of potentials and pseudospinors for atoms Hg through Rn
- A. V. Titov, N. S. Mosyagin, IJQC 71, 359 (1999)
 Generalized relativistic effective core potential: Theoretical grounds

http://www.qchem.pnpi.spb.ru/recp библиотека псевдопотенциалов

Литература: вычисление интегралов

- L. E. McMurchie, E. R. Davidson, J. Comp. Phys. 44, 289 (1981) Calculation of integrals over ab initio pseudopotentials
- R. M. Pitzer, N. W. Winter, *IJQC* 40, 773 (1991)
 Spin-orbit (core) and core potential integrals
- C.-K. Skylaris et al, CPL 296, 445 (1998)
 An efficient method for calculating effective core potential integrals which involve projection operators
- R. Flores-Moreno et al, J. Comp. Chem. 27, 1009 (2006) Half-numerical evaluation of pseudopotential integrals
- R. A. Shaw, J. G. Hill, JCP 147, 074108 (2017)
 Prescreening and efficiency in the evaluation of integrals over *ab initio* effective core potentials
- R. A. Shaw, J. G. Hill, J. Open Source Softw., 6(60), 3039 (2021) libecpint: A C++ library for the efficient evaluation of integrals over effective core potentials

Пример: атом урана

Рассмотрим 64*е*-псевдопотенциал малого остова для атома U:

- ▶ внешний остов: 6*sp*, 5*spd*, 4*spdf*
- ▶ валентные оболочки: 7*sp*, 6*d*, 5*f*

Энергии перехо, $5f^36d^17s^2 ightarrow$	да, см ^{—1}	Абсолютнь	ie погрешно	ости, см ⁻¹
	DFB	<mark>no Breit</mark>	GRECP	Val. RECP
$5f^37s^27p^1$	7516	-93	-1	-6
$5f^36d^27s^1$	13124	78	2	1
$5f^36d^17s^17p^1$	17200	14	1	-9
5f ² 6d ² 7s ²	4640	-779	53	551
5f ² 6d ² 7s ¹ 7p ¹	23856	-764	54	543
$5f^47s^2$	15780	627	-45	-404
$5f^46d^17s^1$	30790	670	-42	-386
$5f^{1}6d^{3}7s^{2}$	31450	-1673	112	1231
$5f^{1}6d^{4}7s^{1}$	38781	-1550	115	1209

Данные любезно предоставлены Н. С. Мосягиным

Некоторые существующие реализации

		scalar	spin-orbit	outercore	open source	written in
ARGOS	1981	+	+	-	+	Fortran
MOLGEP	1991	+	+	+	-	Fortran
Turbomole	2005	+	+	-	-	Fortran
libECP	2015	+	-	-	+	С
libecpint	2021	+	-	-	+	C++
libgrecp	2021	+	+	+	+	С

libgrecp написана с нуля на языке С99

- тестирование: DIRAC, MOLGEP
- ориентирована на использование с методами связанных кластеров
- нет ограничений на максимальный угловой момент ЕСР и базиса

Обобщенный релятивистский псевдопотенциал (GRECP)

$$\begin{split} \hat{U} &= U_{LJ}(r) \\ &+ \sum_{lj} \left[U_{lj}(r) - U_{LJ}(r) \right] P_{lj} \\ &+ \sum_{n_c} \sum_{lj} \left\{ \tilde{P}_{n_c lj} \left[U_{n_c lj}(r) - U_{lj}(r) \right] + \left[U_{n_c lj}(r) - U_{lj}(r) \right] \tilde{P}_{n_c lj} \right\} \\ &+ \sum_{n_c n'_c} \sum_{lj} P_{n_c lj} \left[\frac{U_{n_c lj}(r) + U_{n'_c lj}(r)}{2} - U_{lj}(r) \right] P_{n'_c lj} \end{split}$$

▶
$$P_l = \sum_m |Im\rangle \langle Im|$$
▶ $P_{ij} = \sum_m |Ijm\rangle \langle ljm|$
▶ $\tilde{P}_{n_c lj} = \sum_m |n_c ljm\rangle \langle n_c ljm|$
→ проекторы на внешнеостовные *псевдоспиноры* («невыброшенные»)
→ зависят от *r*

A. V. Titov, N. S. Mosyagin, IJQC 71, 359 (1999)

Обобщенный релятивистский псевдопотенциал (GRECP)

$$\hat{U} = U_L(r) + \sum_{l=0}^{L-1} [U_l(r) - U_L(r)] P_l + \sum_{l=1}^{L} \frac{2}{2l+1} U_l^{SO}(r) P_l \ell s$$
$$+ \sum_{n_c} \sum_{l=0}^{L-1} \hat{U}_{n_cl}^{AREP} P_l + \sum_{n_c} \sum_{l=1}^{L} \frac{2}{2l+1} \hat{U}_{n_cl}^{SO} P_l \ell s$$

$$\hat{U}_{n_{c}l}^{AREP} = \frac{l+1}{2l+1}\hat{V}_{n_{c},l+} + \frac{l}{2l+1}\hat{V}_{n_{c},l-}$$
$$\hat{U}_{n_{c}l}^{SO} = \frac{2}{2l+1}\left[\hat{V}_{n_{c},l+} - \hat{V}_{n_{c},l-}\right]$$

$$\hat{V}_{n_{c}lj} = (U_{n_{c}lj} - U_{lj})\tilde{P}_{n_{c}lj} + \tilde{P}_{n_{c}lj}(U_{n_{c}lj} - U_{lj}) - \sum_{n'_{c}}\tilde{P}_{n_{c}lj}\left[\frac{U_{n_{c}lj} + U_{n'_{c}lj}}{2} - U_{lj}\right]\tilde{P}_{n'_{c}lj}$$

A. V. Titov, N. S. Mosyagin, IJQC 71, 359 (1999)

l

Обобщенный релятивистский псевдопотенциал (GRECP)

6 1 453.8239473297523 6 81.783322454467846 6 81.783322454467846 6 81.783322454467846 6 8.37267682879 6 8.32146925189554 6 9.793357373995922 6 9.7733547645580157 6 17.5083244596293 6 7.5083244596293 6 8.55346396373027046 6 9.5534639657847 6 9.8534693657847 6 9.831693637152262 6 9.8316936371512262 6 9.8316936371512262 6 9.8316936371512262 6 9.8316936371512262 6 9.8316936371512262 6 9.8316936371512262 6 9.831693637151226 6 9.33169339715226 6	251/2 3.1547338273554494E-001 3.155347338273554494E-001 3.1653842571459425 4.29150487341568 3.556426215384425 3.142165415780728 3.142165415780728 3.1338574570628851263 3.1338754870720865812 3.1318745098851263 3.285223391715999 3.2142870438851263 3.28562439488987 3.2856343294655517 3.191337694119672 3.0133764119672 3.0133764119672 3.0133764204119672 3.01337644119672 3.01337644119672 3.01337644119672 3.01337644119672 3.01337644119672 3.01337644119672 3.01337644119672 3.01337644119672 3.01337644119672 3.01337644119672 3.01337644119672 3.01337644119672 3.01337644119672 3.01337644119672 3.01337644119672 3.01337644119672 3.01337644119672 3.01347644119672 3.01347644119672 3.01347644119672 3.01347644119672 3.01347644119672 3.01347644119672 3.01347644119672 3.0144779419455517 3.01347644119672 3.0144779419455517 3.014574419455517 3.014574419558 3.014574419578 3.0145744578 3.0145744578 3.0145744578 3.014574578 3.014574578578578 3.01457578578 3.01457578578	Unclip> outercore pseudospioors 0.12733545874705F-002 0.12733545174090F-003 0.1427042545874705876-003 0.14270425625522 0.14270425625522 0.287071457181388 0.8144250452655522 0.287071457181388 0.1027767542885510 0.1027767542883510 0.1027767542883510 0.1027767542883510	12e-GRECP for Si by N.S.Mosyagin from 05.12.20 Pseudospinors from the 3s^2 3p^1 state
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35-AREP 1. 69606906090090 26. 61434228311451 43. 2576525565665 -26. 69654096791052 -1. 76769576510511 12. 81879139665621 1. 72478998169324 1. 777798154185789 8. 6 8. 6 8. 6 8. 6 8. 6 9. 6 9. 7 1. 70 1.	0.000000000000000 0.0000000000	231/2 6.08060000000000 6.08000000000000 6.080000000000
13 2 1 6117.592663549896 1 783.9977668773247 1 263.427469253961 1 66.112795385656970 1 3.77559776937060 2 2.33275664774692 2 3.32755766317964374692 2 0.9345376621995434-001 2 0.9345376621995434-011 2 6.59276255342957 2 4.660717184319925 2 1.8673288538859929	3P-AEEP 9.425558052476154 9.4255580567733691 9.6892279067733691 9.6892279067733691 9.62231916478590 9.6223191645745909 9.62231945676372 9.48557511906376372 9.48557511906376372 9.420572250874 9.420672250874 9.420672250874 9.420672250874 9.420672250874 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.4206755 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.42067250875 9.420675 9.42067250875 9.420675 9.420675 9.420675 9.420675 9.420675 9.420675 9.42075 9.4507575	2P-E50P 0.47956872317522 1.069775932167485 0.949754063346332-601 0.299909022184343822-601 0.797115991688488E-601 0.848953453734632-601 0.14672932623940922-603 0.2776340112920955-605	2P1/2 2P3/2 0.000060000000 0.00000500000000 0.0000600000000 0.00000500000000 0.0000600000000 0.00000500000000 0.0000600000000 0.00000500000000 0.0000600000000 0.00000500000000 0.0000600000000 0.00000600000000 0.0000600000000 0.00000000000000 0.0000600000000 0.0000000000000 0.0000600000000 0.00000000000000 0.0000600000000 0.00000000000000 0.0000000000000 0.00000000000000 0.0000000000000 0.00000000000000 0.0000000000000 0.00000000000000 0.0000000000000 0.000000000000000 0.00000000000000 0.00000000000000000000000000000000000

Полулокальная часть. Постановка задачи

$$\hat{U} = U_{L}(r) + \sum_{l=0}^{L-1} [U_{l}(r) - U_{L}(r)] P_{l} + \sum_{l=1}^{L} \frac{2}{2l+1} U_{l}^{SO}(r) P_{l} t's$$

$$\chi_{A}(r) = N_{A} x_{A}^{n_{A}} y_{A}^{l_{A}} z_{A}^{m_{A}} e^{-\alpha_{A}|r-A|^{2}}$$

$$\chi_{B}(r) = N_{B} x_{B}^{n_{B}} y_{B}^{l_{B}} z_{B}^{m_{B}} e^{-\alpha_{B}|r-B|^{2}}$$

$$\chi_{A}(r) = N_{B} x_{B}^{n_{B}} y_{B}^{l_{B}} z_{B}^{m_{B}} e^{-\alpha_{B}|r-B|^{2}}$$

$$\chi_{A} = x - A_{x}$$

Задача сводится к вычислению матричных элементов трех типов:

 $\blacktriangleright \langle \chi_A | U(r_C) | \chi_B \rangle$

 χ_A

- $\blacktriangleright \langle \chi_A | U(\mathbf{r}_C) P_I | \chi_B \rangle$
- $\blacktriangleright \langle \chi_A | U(r_C) P_I \hat{\ell} P_I | \chi_B \rangle$

Схема Мак Мёрчи-Дэвидсона На примере интегралов 1 типа $\langle \chi_A | U(r) | \chi_B \rangle$

$$U_{AB} = \int \chi_A(\mathbf{r}) \ r_C^{n'-2} \ e^{-\xi r_C^2} \ \chi_B(\mathbf{r}) \ d\mathbf{r}_C$$

Идея: выполним переразложение функций χ_A и χ_B на центре **С**:

 $\mathbf{r}_A = \mathbf{r}_C + \mathbf{C}\mathbf{A}$

$$e^{-\alpha_A r_A^2} = e^{-\alpha_A r_C^2} e^{-2\alpha_A \mathbf{r}_C \cdot \mathbf{C} \mathbf{A}} e^{-\alpha_A |\mathbf{C}\mathbf{A}|^2}$$

(аналогично для χ_B). Подставляем в интеграл:

$$U_{AB} = \frac{D_{ABC}}{4\pi} \int x_A^{n_A} y_A^{l_A} z_A^{m_A} x_B^{n_B} y_B^{l_B} z_B^{m_B} r_C^{n'-2} e^{-\alpha r_C^2} e^{\mathbf{k} \cdot \mathbf{r}_C} d\mathbf{r}_C$$

 $\begin{aligned} \alpha &= \alpha_A + \alpha_B + \xi \\ \mathbf{k} &= -2(\alpha_A \mathbf{C} \mathbf{A} + \alpha_B \mathbf{C} \mathbf{B}) \\ D_{ABC} &= N_A N_B \ e^{-\alpha_A |\mathbf{C} \mathbf{A}|^2 - \alpha_B |\mathbf{C} \mathbf{B}|^2} \end{aligned}$

Схема МакМёрчи-Дэвидсона На примере интегралов 1 типа $\langle \chi_A | U(r) | \chi_B \rangle$

$$U_{AB} = \frac{D_{ABC}}{4\pi} \int x_A^{n_A} y_A^{l_A} z_A^{m_A} x_B^{m_B} y_B^{l_B} z_B^{m_B} r_C^{n'-2} e^{-\alpha r_C^2} e^{\mathbf{k} \cdot \mathbf{r}_C} d\mathbf{r}_C$$

Подставим тождества $x_A = x_C + CA_x$ и используем формулу бинома:

$$U_{AB} = \frac{D_{ABC}}{4\pi} \sum_{a=0}^{n_A} \sum_{b=0}^{l_A} \sum_{c=0}^{m_B} \sum_{a=0}^{l_B} \sum_{e=0}^{m_B} \sum_{f=0}^{n_A} \binom{n_A}{a} \binom{l_A}{b} \binom{m_A}{c} \binom{n_B}{d} \binom{l_B}{e} \binom{m_B}{f} \times \\ \times CA_x^{n_A - a} CA_y^{l_A - b} CA_z^{m_A - c} CB_x^{n_B - d} CB_y^{l_B - e} CB_z^{m_B - f} \times \\ \times \int x_C^{a+d} y_C^{b+e} z_C^{c+f} r_C^{n'-2} e^{-\alpha r_C^2} e^{\mathbf{k} \cdot \mathbf{r}_C} d\mathbf{r}_C$$

Схема МакМёрчи-Дэвидсона На примере интегралов 1 типа $\langle \chi_A | U(r) | \chi_B \rangle$

$$\int x_C^{a+d} y_C^{b+e} z_C^{c+f} r_C^{n'-2} e^{-\alpha r_C^2} e^{\mathbf{k} \cdot \mathbf{r}_C} d\mathbf{r}_C$$

Используем формулу для разложения плоской волны:

$$e^{kr_{C}} = 4\pi \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{+\lambda} M_{\lambda}(kr_{C}) S_{\lambda\mu}(\hat{k}) S_{\lambda\mu}(\hat{r}_{C})$$

 $M_\lambda(x)$ — модицифированные функции Бесселя первого рода $S_{\lambda|\mu}$ — действительные сферические гармоники $\hat{k}=k/|k|,\,\hat{r}_C=r_C/|r_C|$ — угловые переменные для векторов k и $r_C,$ соответственно

Используем формулы $x_C = r_C \hat{x}_C$ (+ аналогичные для других компонент):

$$4\pi \sum_{\lambda=0}^{\infty} \underbrace{\int r_{C}^{a+b+c+d+e+f+n'} e^{-\alpha r_{C}^{2}} M_{\lambda}(kr_{C}) dr_{C}}_{=Q_{\lambda}^{N} - \text{радиальный интеграл}} \underbrace{\int \sum_{\mu=-\lambda}^{+\lambda} \hat{x}_{C}^{a+b} \hat{y}_{C}^{b+e} \hat{z}_{C}^{c+f} S_{\lambda\mu}(\hat{k}) S_{\lambda\mu}(\hat{r}_{C}) d\hat{r}_{C}}_{=\Omega_{\lambda}^{a+d,b+e,c+f} - \text{угловой интеграл}}$$

Схема МакМёрчи-Дэвидсона На примере интегралов 1 типа $\langle \chi_A | U(r) | \chi_B \rangle$

$$U_{AB} = D_{ABC} \sum_{a=0}^{n_A} \sum_{b=0}^{l_A} \sum_{c=0}^{m_B} \sum_{d=0}^{n_B} \sum_{e=0}^{m_B} \sum_{f=0}^{m_B} \binom{n_A}{a} \binom{l_A}{b} \binom{n_A}{c} \binom{n_B}{d} \binom{l_B}{e} \binom{m_B}{f} \times \\ \times CA_x^{n_A-a} CA_y^{l_A-b} CA_z^{m_A-c} CB_x^{n_B-d} CB_y^{l_B-e} CB_z^{m_B-f} \times \\ \times \sum_{\lambda=0}^{\infty} Q_{\lambda}^{a+b+c+d+e+f+n'}(k,\alpha) \ \Omega_{\lambda}^{a+d,b+e,c+f}(\hat{k})$$

Радиальные интегралы 1 типа:

$$Q_{\lambda}^{N}(k,\alpha) = \int_{0}^{+\infty} r^{N} e^{-\alpha r^{2}} M_{\lambda}(kr) dr$$
$$_{k = -2(\alpha_{A}CA + \alpha_{B}CB)}$$
$$_{\alpha = \alpha_{A} + \alpha_{B} + \xi}$$

Угловые интегралы 1 типа:

$$\Omega_{\lambda}^{IJK}(\hat{k}) = \sum_{\mu=-\lambda}^{+\lambda} S_{\lambda\mu}(\hat{k}) \int \hat{x}^{I} \hat{y}^{J} \hat{z}^{K} S_{\lambda\mu}(\hat{r}) d\hat{r}$$

Схема Мак Мёрчи-Дэвидсона Интегралы 2 типа $\langle \chi_A | U(r) P_l | \chi_B \rangle$

$$U_{AB}^{l} = \int \chi_{A}(\mathbf{r}) r_{C}^{n'-2} e^{-\xi r_{C}^{2}} \sum_{m} |S_{lm}\rangle \langle S_{lm}| \chi_{B}(\mathbf{r}) d\mathbf{r}_{C} =$$

$$= 4\pi D_{ABC} \sum_{a=0}^{n_{A}} \sum_{b=0}^{l_{A}} \sum_{c=0}^{m_{B}} \sum_{a=0}^{l_{B}} \sum_{e=0}^{m_{B}} \binom{n_{A}}{a} \binom{l_{A}}{b} \binom{n_{A}}{c} \binom{n_{B}}{d} \binom{l_{B}}{e} \binom{m_{B}}{f} \times$$

$$\times CA_{x}^{n_{A}-a} CA_{y}^{l_{A}-b} CA_{z}^{m_{A}-c} CB_{x}^{n_{B}-d} CB_{y}^{l_{B}-e} CB_{z}^{m_{B}-f} \times$$

$$\times \sum_{\lambda=0}^{\infty} \sum_{\bar{\lambda}=0}^{\infty} Q_{\lambda\bar{\lambda}}^{a+b+c+d+e+f+n'}(k_{A},k_{B},\alpha) \sum_{m=-l}^{+l} \Omega_{\lambda lm}^{abc}(\hat{k}) \Omega_{\bar{\lambda}lm}^{def}(\hat{k})$$

Радиальные интегралы 2 типа:

$$Q_{\lambda\bar{\lambda}}^{N}(k_{A},k_{B},\alpha) = \int_{0}^{+\infty} r^{N} e^{-\alpha r^{2}} M_{\lambda}(k_{A}r) M_{\bar{\lambda}}(k_{B}r) dr$$

Угловые интегралы 2 типа:

$$\Omega^{abc}_{\lambda lm}(\hat{k}) = \sum_{\mu=-\lambda}^{+\lambda} S_{\lambda\mu}(\hat{k}) \int \hat{x}^a \hat{y}^b \hat{z}^c \; S_{\lambda\mu}(\hat{r}) \; S_{lm}(\hat{r}) \; d\hat{r}$$

Схема МакМёрчи-Дэвидсона Интегралы 3 типа (спин-орбита): $\langle \chi_A | U(r) P_I \mathscr{C} P_I | \chi_B \rangle$

$$\begin{aligned} SO_{AB}^{l} &= i^{-1} \int \chi_{A}(\mathbf{r}) r_{C}^{n'-2} e^{-\xi r_{C}^{2}} \left(\sum_{m} |S_{lm}\rangle \langle S_{lm}| \right) \mathcal{C} \left(\sum_{m} |S_{lm}\rangle \langle S_{lm}| \right) \chi_{B}(\mathbf{r}) d\mathbf{r}_{C} = \\ &= 4\pi D_{ABC} \sum_{a=0}^{n_{A}} \sum_{b=0}^{l_{A}} \sum_{c=0}^{m_{B}} \sum_{a=0}^{l_{B}} \sum_{e=0}^{m_{B}} \sum_{f=0}^{m_{B}} \binom{n_{A}}{a} \binom{l_{A}}{b} \binom{n_{A}}{c} \binom{n_{B}}{d} \binom{l_{B}}{e} \binom{n_{B}}{f} \times \\ &\times CA_{x}^{n_{A}-a} CA_{y}^{l_{A}-b} CA_{z}^{m_{A}-c} CB_{x}^{n_{B}-d} CB_{y}^{l_{B}-e} CB_{z}^{m_{B}-f} \times \\ &\times \sum_{\lambda=0}^{\infty} \sum_{\lambda=0}^{\infty} \mathcal{Q}_{\lambda\overline{\lambda}}^{a+b+c+d+e+f+n'} (k_{A}, k_{B}, \alpha) \sum_{m=-l}^{+l} \sum_{m'=-l}^{+l} \Omega_{\lambda lm}^{abc}(\hat{k}) \Omega_{\overline{\lambda}lm}^{def}(\hat{k}) \langle S_{lm}| \mathcal{C}|S_{lm'} \rangle \end{aligned}$$

радиальные интегралы 2 типа

угловые интегралы 2 типа

▶ интегралы от оператора углового момента *ℓ* в базисе *S*_{*lm*}

Вычисление угловых интегралов

Интегралы 1 типа:

$$\Omega_{\lambda}^{IJK}(\hat{k}) = \sum_{\mu=-\lambda}^{+\lambda} S_{\lambda\mu}(\hat{k}) \sum_{rst}^{\lambda} y_{rst}^{\lambda\mu} \int \hat{x}^{l+r} \hat{y}^{J+s} \hat{z}^{K+t} d\hat{r}$$

Интегралы 2 типа:

$$\Omega_{\lambda lm}^{abc}(\hat{k}) = \sum_{\mu=-\lambda}^{+\lambda} S_{\lambda\mu}(\hat{k}) \sum_{rst}^{\lambda} \sum_{uvw}^{l} y_{rst}^{\lambda\mu} y_{uvw}^{lm} \int \hat{x}^{a+r+u} \hat{y}^{b+s+v} \hat{z}^{c+t+w} d\hat{r}$$

Значение сферической гармоники $S_{\lambda\mu}$ в точке \hat{k} :

$$\mathcal{S}_{\lambda\mu}(\hat{k}) = \sum_{rst}^{\lambda} y_{rst}^{\lambda\mu} \,\, \hat{k}_x^r \hat{k}_y^s \hat{k}_z^r$$

Интегралы от одночленов:

$$\int \hat{x}^i \hat{y}^j \hat{z}^k d\hat{r} = \begin{cases} 4\pi \frac{(i-1)!! \ (j-1)!! \ (k-1)!!}{(i+j+k+1)!!} & \text{если } i, \ j, k \text{ четные числа} \\ 0 & \text{в остальных случаях} \end{cases}$$

Вычисление угловых интегралов

Коэффициенты *y*^{*lm*}_{*rst*} вычисляются по формуле:

$$\begin{split} y_{\rm rst}^{lm} &= \sqrt{\frac{2l+1}{2\pi} \frac{(l-|m|)!}{(l+|m|)!}} \frac{1}{2^l l!} \sum_{i=j}^{(l-|m|)/2} \binom{l}{i} \binom{i}{j} \frac{(-1)^i (2l-2i)!}{(l-|m|-2i)!} \times \\ &\times \sum_{k=0}^j \binom{j}{k} \binom{j}{k} \binom{|m|}{r-2k} (-1)^{(|m|-r+2k)/2} \times \\ &\times \begin{cases} 1 & m > 0 \text{ м } |m| - r \text{ четное} \\ 1/\sqrt{2} & m = 0 \text{ м } r & \text{четное} \\ 1 & m < 0 \text{ м } |m| - r \text{ нечетное} \\ 0 & \text{в остальных случаях} \end{cases} \\ j &= (r+s-|m|)/2 \end{split}$$

в libgrecp y^{lm} вычисляются только один раз и хранятся в виде таблиц

R. Flores-Moreno et al, J. Comp. Chem. 27, 1009 (2006)

Вычисление радиальных интегралов

Радиальные интегралы 1 типа:

$$Q_{\lambda}^{N}(k, lpha) = \int_{0}^{+\infty} r^{N} e^{-lpha r^{2}} M_{\lambda}(kr) dr$$

Радиальные интегралы 2 типа:

$$Q_{\lambda\bar{\lambda}}^{N}(k_{A},k_{B},lpha)=\int_{0}^{+\infty}r^{N}\;e^{-lpha r^{2}}\;M_{\lambda}(k_{A}r)\;M_{ar{\lambda}}(k_{B}r)\;dr$$

 $M_{\lambda}(\mathbf{x})$ – сферические модифицированные функции Бесселя $\alpha = \alpha_A + \alpha_B + \xi$ $k_A = 2\alpha_A |\mathbf{CA}|$ $k_B = 2\alpha_B |\mathbf{CB}|$ $k = 2|\alpha_A \mathbf{CA} - 2\alpha_B \mathbf{CB}|$

L. E. McMurchie, E. R. Davidson, J. Comp. Phys. 44, 289 (1981)

Вычисление радиальных интегралов

R. Flores-Moreno et al, J. Comp. Chem. 27, 1009 (2006)

Вычисление радиальных интегралов

Аналогично для радиальных интегралов 2 типа:

$$Q_{\lambda\bar{\lambda}}^{N}(k_{A},k_{B},r) = \int_{0}^{+\infty} r^{N} e^{-\alpha r^{2}} M_{\lambda}(k_{A}r) M_{\bar{\lambda}}(k_{B}r) dr$$
$$Q_{\lambda\bar{\lambda}}^{N}(k_{A},k_{B},r) = \int_{0}^{+\infty} r^{N} e^{-\alpha r^{2}} e^{k_{A}r} K_{\lambda}(k_{A}r) e^{k_{B}r} K_{\bar{\lambda}}(k_{B}r) dr$$
$$\int_{0}^{+\infty} r^{N} e^{-\alpha_{A}|CA|^{2} - \alpha_{A}r^{2} + k_{A}r} e^{-\alpha_{B}|CB|^{2} - \alpha_{B}r^{2} + k_{B}r} K_{\lambda}(k_{A}r) K_{\bar{\lambda}}(k_{B}r) dr$$

R. Flores-Moreno et al, J. Comp. Chem. 27, 1009 (2006)

Квадратурная формула Log3

Требуется вычислить интеграл

$$I=\int_0^{+\infty}f(r)\ r^2\ dr$$

Сетка из n_r узлов:

$$\begin{aligned} x_i &= \frac{i}{n_r + 1}, \quad x_i \in (0, 1) \\ r_i &= -\alpha \ln(1 - x_i^3), \quad r_i \in (0, +\infty) \\ w_i &= \frac{3\alpha^3 x_i^2 \ln^2(1 - x_i^3)}{(1 - x_i^3)(n_r + 1)} \\ I &\approx \sum_{i}^{n_r} w_i \ f(r_i) \end{aligned}$$

При расширении сетки до $n_r^{(2)} = n_r^{(1)} + 1$ узлов требуется пересчитывать веса и значения f(r) только в каждой второй точке:

$$I^{(2)} \approx \frac{I^{(1)}}{2} + \sum_{i=1,3,5,\dots}^{n_r^{(2)}} w_i f(r_i)$$

Интеграл может быть вычислен с любой наперед заданной точностью!

M. E. Mura, P. J. Knowles, JCP, 104, 9848 (1996); C.-K. Skylaris et al, CPL 296, 445 (1998)

Сжатые ЕСР и базисные функции

В реальных расчетах используются разложения операторов U(r):

$$U(r) = \sum_i d_i r^{n_i-2} e^{-\xi_i r^2}$$

Сжатые гауссовы функции:

$$\chi_{\mathcal{A}}(\mathbf{r}) = \sum_{i} c_{i} N_{i} x_{\mathcal{A}}^{n} y_{\mathcal{A}}^{l} z_{\mathcal{A}}^{m} e^{-\alpha_{i} |\mathbf{r}-\mathbf{A}|^{2}} \qquad L_{\mathcal{A}} = n + l + m$$

Переписываем радиальные интегралы для сжатых U(r) и $\chi_A(r)$:

$$\begin{aligned} Q_{\lambda\bar{\lambda}}^{N} &\to \quad T_{\lambda\bar{\lambda}}^{N'} = \int_{0}^{+\infty} r^{N'+2} \ U(r) \ F_{A}^{\lambda}(r) \ F_{B}^{\bar{\lambda}}(r) \ dr \\ N' = 0, ..., L_{A} + L_{B} \\ F_{A}^{\lambda}(r) = \sum_{i} c_{i} \ N_{i} \ e^{-\alpha_{A}|CA|^{2} - k_{A,i}r^{2}} \ M_{\lambda}(k_{A,i}r) \end{aligned}$$

угловые интегралы одинаковы для всех гауссовых примитивов!
 в случае интегралов первого типа Q^N_λ не дает преимуществ
 R. Flores-Moreno *et al, J. Comp. Chem.* 27, 1009 (2006)

Сжатые ЕСР и базисные функции

Алгоритм вычисления радиальных интегралов

$$T_{\lambda\bar{\lambda}}^{N'} = \int_0^{+\infty} r^{N'} U(r) \ F_A^{\lambda}(r) \ F_B^{\bar{\lambda}}(r) \ r^2 \ dr$$

R. Flores-Moreno et al, J. Comp. Chem. 27, 1009 (2006)

Интегралы с проекторами на псевдоспиноры (GRECP)

Требуется вычислить интегралы:

$$\langle \chi_A | \hat{U}_{n_c l}^{AREP} P_l | \chi_B \rangle \qquad \langle \chi_A | \hat{U}_{n_c l}^{SO} P_l \ell P_l | \chi_B \rangle$$

После подстановки выражений

$$\hat{U}_{n_{c}l}^{AREP} = \frac{l+1}{2l+1} \hat{V}_{n_{c},l+} + \frac{l}{2l+1} \hat{V}_{n_{c},l-} \\ \hat{U}_{n_{c}l}^{SO} = \frac{2}{2l+1} \left[\hat{V}_{n_{c},l+} - \hat{V}_{n_{c},l-} \right]$$

задача сводится к вычислению интегралов:

 $\langle \chi_A | \hat{V}_{n_c l j} P_I | \chi_B \rangle \qquad \langle \chi_A | \hat{V}_{n_c l j} P_I \ell P_I | \chi_B \rangle$

$$\hat{V}_{n_{c}lj} = (U_{n_{c}lj} - U_{lj}) \tilde{P}_{n_{c}lj} + \tilde{P}_{n_{c}lj} (U_{n_{c}lj} - U_{lj}) - \sum_{n_{c}'} \tilde{P}_{n_{c}lj} \left[\frac{U_{n_{c}lj} + U_{n_{c}'lj}}{2} - U_{lj} \right] \tilde{P}_{n_{c}'lj}$$

Интегралы с проекторами на псевдоспиноры (GRECP) Скалярно-релятивистская часть $\langle \chi_A | \hat{V}_{n_c i j} P_l | \chi_B \rangle$

$$|n_c ljm\rangle = R_{n_c lj}(r)S_{lm}(\hat{r}) \rightarrow \tilde{P}_{n_c lj} = \sum_m |n_c ljm\rangle \langle n_c ljm|$$

1. $\langle \chi_A | [U_{n_c l j} - U_{l j}] \tilde{P}_{n_c l j} P_l | \chi_B \rangle = \sum_m \underbrace{\langle \chi_A | [U_{n_c l j} - U_{l j}] P_l | n_c l j m \rangle}_{\text{MHEEPBA 2 TMBA}} \langle n_c l j m | \chi_B \rangle$

2.
$$\langle \chi_A | \tilde{P}_{n_c l j} [U_{n_c l j} - U_{l j}] P_l | \chi_B \rangle = \sum_m \langle \chi_A | n_c l j m \rangle \underbrace{\langle n_c l j m | [U_{n_c l j} - U_{l j}] P_l | \chi_B \rangle}_{\text{whterpan 2 twna}}$$

3.
$$\langle \chi_A | \tilde{P}_{n_c l j} \left[\frac{U_{n_c l j} + U_{n'_c l j}}{2} - U_{l j} \right] \tilde{P}_{n'_c l j} P_l | \chi_B \rangle =$$

$$= \sum_m \langle \chi_A | n_c l j m \rangle \underbrace{\langle n_c l j m | \left[\frac{U_{n_c l j} + U_{n'_c l j}}{2} - U_{l j} \right] | n'_c l j m \rangle}_{\text{радиальный интеграл} \to \text{ квадратура}} \langle n'_c l j m | \chi_B \rangle$$

Интегралы с проекторами на псевдоспиноры (GRECP) Эффективное спин-орбитальное взаимодействие $\langle \chi_A | \hat{V}_{n_c l j} P_l \mathscr{C} P_l | \chi_B \rangle$

4.
$$\langle \chi_A | [U_{n_c l j} - U_{l j}] \tilde{P}_{n_c l j} P_l | \chi_B \rangle =$$

$$= \sum_{m} \underbrace{\langle \chi_A | [U_{n_c l j} - U_{l j}] P_l | n_c l j m \rangle}_{\text{интеграл 2 типа}} \sum_{m'} \langle S_{l m} | \ell | S_{l m'} \rangle \langle n_c l j m' | \chi_B \rangle$$

5.

$$\langle \chi_A | \tilde{P}_{n_c l j} \left[U_{n_c l j} - U_{l j} \right] P_l | \chi_B \rangle = \sum_m \langle \chi_A | n_c l j m \rangle \underbrace{\langle n_c l j m | \left[U_{n_c l j} - U_{l j} \right] P_l \mathscr{C} P_l | \chi_B \rangle}_{\text{интеграл 3 типа (SO)}}$$

$$6. \langle \chi_{A} | \tilde{P}_{n_{c}lj} \left[\frac{U_{n_{c}lj} + U_{n_{c}'lj}}{2} - U_{lj} \right] \tilde{P}_{n_{c}'lj} P_{l} | \chi_{B} \rangle =$$

$$= \sum_{m} \langle \chi_{A} | n_{c}ljm \rangle \langle n_{c}ljm | \left[\frac{U_{n_{c}lj} + U_{n_{c}'lj}}{2} - U_{lj} \right] | n_{c}'ljm \rangle \sum_{m'} \langle S_{lm} | \boldsymbol{\ell} | S_{lm'} \rangle \langle n_{c}'ljm | \chi_{B} \rangle$$

радиальный интеграл \rightarrow квадратура

Библиотека libgrecp _{Общая структура}

https://www.gnu.org/software/gsl/

Структуры данных: псевдопотенциалы

$$U_{lj}(r) = \sum_{i} d_i r^{n_i - 2} e^{-\xi_i r^2}$$

```
1 typedef struct {
2     int L;
3     int J;
4     int num_primitives;
5     int *powers;
6     double *coeffs;
7     double *alpha;
8 } libgreep_ecp_t;
```

Структуры данных: базисные функции (оболочки)

$$\chi_A(\mathbf{r}) = \sum_i c_i \; N_i \; x_A^n y_A^l z_A^m \; e^{-\alpha_i |\mathbf{r} - \mathbf{A}|^2}$$

```
typedef struct {
2
      int L;
3
     int cart size:
4
     int *cart list:
5
    int num_primitives;
6
     double *coeffs:
7
      double *alpha;
8
      double origin[3];
9
  } libgrecp_shell_t;
```

```
Пример: d-оболочка
cart_size = 6
cart_list = \begin{bmatrix} 2, 0, 0, \\ d_{XX} \end{bmatrix}, \underbrace{1, 0, 0}_{d_{XY}}, \underbrace{1, 0, 1}_{d_{XZ}}, \underbrace{0, 2, 0}_{d_{VY}}, \underbrace{0, 1, 1}_{d_{VZ}}, \underbrace{0, 0, 2}_{d_{ZZ}} \end{bmatrix}
```

Радиально-локальные интегралы $\langle \chi_A | U(r) | \chi_B \rangle$

```
C:

void libgrecp_type1_integrals(

libgrecp_shell_t *shell_A, libgrecp_shell_t *shell_B,

double *ecp_origin, libgrecp_ecp_t *ecp,

double *matrix

5 );
```

Пример: матрица интегралов между *d*- и *f*-оболочками:

f_{xxx} f_{xxy} f_{xxz} f_{xyy} f_{xyz} f_{xzz} f_{yyy} f_{yyz} f_{yzz} f_{zzz}

Радиально-локальные интегралы $\langle \chi_A | U(r) | \chi_B
angle$

```
subroutine libgrecp_type1_integrals_shells(
1
                                                             &
2
       origin_A, L_A, num_primitives_A, coeffs_A, alpha_A,
                                                             87.
3
       origin_B, L_B, num_primitives_B, coeffs_B, alpha_B,
4
       ecp_origin, ecp_nprim, ecp_pow, ecp_coef, ecp_alpha, &
5
       matrix
                                                             x
6
   )
7
8
  integer(4) :: L_A, num_primitives_A
9
10 real(8) :: origin_A(*), coeffs_A(*), alpha_A(*)
11
12 ! shell centered on B
13 integer(4) :: L_B, num_primitives_B
14 real(8) :: origin B(*), coeffs B(*), alpha B(*)
15
16 ! effective core potential expansion
17
  integer(4) :: ecp_nprim, ecp_pow(*)
  real(8) :: ecp origin(*), ecp coef(*), ecp alpha(*)
18
19
20 ! output
21 real(8) :: matrix(*)
```

Полулокальные интегралы $\langle \chi_A | U(r) P_l | \chi_B \rangle$

C:

```
void libgrecp_type2_integrals(
    libgrecp_shell_t *shell_A, libgrecp_shell_t *shell_B,
    double *ecp_origin, libgrecp_ecp_t *ecp,
    double *matrix
    );
```

1	<pre>subroutine libgrecp_type2_integrals_shells(</pre>	&
2	origin_A, L_A, num_primitives_A, coeffs_A, alpha_A,	&
3	origin_B, L_B, num_primitives_B, coeffs_B, alpha_B,	&z
4	<pre>ecp_origin, ecp_L, ecp_num_primitives,</pre>	&z
5	ecp_powers, ecp_coeffs, ecp_alpha,	&
6	matrix	&z
7		

Полулокальные интегралы от эффективного оператора SO: $\langle \chi_A | U^{SO}(r) P_l \mathscr{C} P_l | \chi_B \rangle$

C:

```
void libgrecp_spin_orbit_integrals(
    libgrecp_shell_t *shell_A, libgrecp_shell_t *shell_B,
    double *ecp_origin, libgrecp_ecp_t *ecp,
    double *so_x_matrix, double *so_y_matrix, double *so_z_matrix
    );
```

1	<pre>subroutine libgrecp_spin_orbit_integrals_shells(</pre>	&
2	origin_A, L_A, num_primitives_A, coeffs_A, alpha_A,	&
3	origin_B, L_B, num_primitives_B, coeffs_B, alpha_B,	&
4	<pre>ecp_origin, ecp_ang_momentum, ecp_num_primitives,</pre>	&
5	ecp_powers, ecp_coeffs, ecp_alpha,	&
6	so_x_matrix, so_y_matrix, so_z_matrix	&
7)	

Интегралы с проекторами на внешнеостовные оболочки:

 $\langle \chi_A | \hat{U}_{n_c l}^{AREP} P_l | \chi_B
angle$ и $\langle \chi_A | \hat{U}_{n_c l}^{SO} P_l \mathscr{C} P_l | \chi_B
angle$

C:

```
void libgrecp_outercore_potential_integrals(
    libgrecp_shell_t *shell_A, libgrecp_shell_t *shell_B,
    double *ecp_origin, int num_oc_shells,
    libgrecp_ecp_t **oc_potentials, libgrecp_shell_t **oc_shells,
    double *arep, double *so_x, double *so_y, double *so_z
    );
```

1	<pre>subroutine libgrecp_outercore_potential_integrals_shells(</pre>	&
2	origin_A, L_A, num_primitives_A, coeffs_A, alpha_A,	&
3	origin_B, L_B, num_primitives_B, coeffs_B, alpha_B,	&
4	<pre>ecp_origin, num_oc_shells, oc_shells_L, oc_shells_J,</pre>	&
5	<pre>ecp_num_primitives, ecp_powers, ecp_coeffs, ecp_alpha,</pre>	&
6	oc_shells_num_primitives, oc_shells_coeffs, oc_shells_alpha,	&
7	arep_matrix, so_x_matrix, so_y_matrix, so_z_matrix	&
8)	

$$\hat{V}_{n_{c}lj} = (U_{n_{c}lj} - U_{lj})\tilde{P}_{n_{c}lj} + \tilde{P}_{n_{c}lj}(U_{n_{c}lj} - U_{lj}) - \sum_{n_{c}'}\tilde{P}_{n_{c}lj}\left[\frac{U_{n_{c}lj} + U_{n_{c}'lj}}{2} - U_{lj}\right]\tilde{P}_{n_{c}'lj}$$

Дальнейшие планы

дальнейшее тщательное тестирование

встраивание библиотеки в DIRAC

- ightarrow соединения актинидов
- ightarrow кластерное моделирование
- \rightarrow трансактиниды: E121, E122, E123

оптимизация производительности

- ightarrow скрининг радиальных интегралов
- ightarrow более совершенные радиальные квадратуры

Python-интерфейс

публикация всех исходных кодов на GitHub

С Новым годом!

выражаю благодарность Н. С. Мосягину и А. В. Титову

буду рад ответить на Ваши вопросы