libgrpp: a library for the evaluation of molecular integrals of the generalized relativistic pseudopotential operator over Gaussian functions

Alexander V. Oleynichenko A. Zaitsevskii, N. S. Mosyagin, A. N. Petrov, E. Eliav, A. V. Titov

oleynichenko_av@pnpi.nrcki.ru http://qchem.pnpi.spb.ru

55 PNPI Winter School, Luga

17th March, 2023

What is the generalized relativistic pseudopotential method?

Integration algorithm and the libgrpp library

Accuracy assessment of generalized pseudopotentials in molecular problems

Appendix

Bibliography: (generalized) relativistic pseudopotentials

N. S. Mosyagin, A. V. Titov, Z. Latajka, *IJQC* 63, 1107 (1997)

Generalized relativistic effective core potential: Gaussian expansions of potentials and pseudospinors for atoms Hg through Rn

A. V. Titov, N. S. Mosyagin, *IJQC* 71, 359 (1999) Generalized relativistic effective core potential: Theoretical grounds

A. N. Petrov, N. S. Mosyagin, A. V. Titov, I. I. Tupitsyn, J. Phys. B 37, 4621 (2004) Accounting for the Breit interaction in relativistic effective core potential calculations of actinides

M. Dolg, X. Cao, Chem. Rev. 112, 403 (2012)

Relativistic Pseudopotentials: Their Development and Scope of Applications

N. S. Mosyagin, A. V. Zaitsevskii, A. V. Titov, *IJQC*, e26076 (2019) Generalized relativistic effective core potentials for superheavy elements

 A. Zaitsevskii, N. S. Mosyagin, A. V. Oleynichenko, E. Eliav, *IJQC*, e27077 (2022) Generalized relativistic small-core pseudopotentials accounting for quantum electrodynamic effects: Construction and pilot applications

Relativistic pseudopotentials (RPP) in a nutshell

- core electrons of a heavy atom are removed
- their effect on the valence electrons are simulated with the Û potential (the Pauli principle is accounted for)
- remaining electrons are described by the one- or two-component Schrödinger equation:

$$\hat{H}^{RPP} = \sum_{i} \left(-rac{\Delta_{i}}{2} + \sum_{lpha} \left(-rac{z_{lpha}}{r_{lpha i}} + \hat{U}_{lpha}(i)
ight)
ight) + \sum_{i>j} rac{1}{r_{ij}}$$

i, j - sum over electrons α - sum over atoms in a molecule z_{α} - effective charge of the α -th nucleus, $z_{\alpha} = Z_{\alpha} - N_{\text{core electrons}}$

• The \hat{U} operator can effectively account for:

- Breit interaction between electrons
- finite nuclear charge distribution (Fermi, ...)
- QED corrections (self-energy + vacuum polarization)

(these effects are included during the RPP construction stage)

Semilocal pseudopotentials

One U_{lj} potential for each partial wave with quantum numbers l, j:

$$\hat{U} = U_{LJ}(r) + \sum_{l=0}^{L} \sum_{j=|l-1/2|}^{l+1/2} [U_{lj}(r) - U_{LJ}(r)] P_{lj}$$

▶ projector
$$P_{lj} = \sum_{m} |ljm\rangle \langle ljm|$$
 "extracts" states with given *l*, *j*

 \blacktriangleright calculation of molecular integrals is relatively simple \rightarrow are widely used in practical calculations

work poorly for f-elements (lanthanides, actinides) and superheavy elements

What is the generalized relativistic pseudopotential (GRPP)?

Generalized / Gatchina pseudopotentials depend also on the principal quantum number: $U_{lj} \rightarrow U_{nlj}$

$$\begin{split} \hat{U}^{GRPP} &= U_{LJ}(r) + \sum_{lj} \left[U_{lj}(r) - U_{LJ}(r) \right] P_{lj} \\ &+ \sum_{lj} \sum_{n_c} \{ \tilde{P}_{n_c lj} \left[U_{n_c lj}(r) - U_{lj}(r) \right] + \left[U_{n_c lj}(r) - U_{lj}(r) \right] \tilde{P}_{n_c lj} \\ &- \sum_{lj} \sum_{n_c n'_c} \tilde{P}_{n_c lj} \left[\frac{U_{n_c lj}(r) + U_{n'_c lj}(r)}{2} - U_{lj}(r) \right] \tilde{P}_{n'_c lj} \end{split}$$

• $\tilde{P}_{n_c lj} = \sum_m |\tilde{\phi}_{n_c ljm}\rangle \langle \tilde{\phi}_{n_c ljm}|$ stand for projectors onto outercore *pseudospinors* • $\tilde{P}_{n_c lj}$ depends on $r \Rightarrow$ the \hat{U}^{GRPP} operator is non-local!

What is the generalized relativistic pseudopotential (GRPP)?

Scalar-relativistic potential and effective spin-orbit interaction operators

$$\hat{U}^{GRPP} = U_L(r) + \sum_{l=0}^{L-1} [U_l(r) - U_L(r)] P_l + \sum_{l=1}^{L} \frac{2}{2l+1} U_l^{SO}(r) P_l \ell s$$
$$+ \sum_{n_c} \sum_{l=0}^{L} \hat{U}_{n_cl}^{AREP} P_l + \sum_{n_c} \sum_{l=1}^{L} \hat{U}_{n_cl}^{SO} P_l \ell s$$

$$\hat{U}_{n_{c}l}^{AREP} = rac{l+1}{2l+1} \hat{V}_{n_{c},l+} + rac{l}{2l+1} \hat{V}_{n_{c},l-}$$
 $\hat{U}_{n_{c}l}^{SO} = rac{2}{2l+1} \left[\hat{V}_{n_{c},l+} - \hat{V}_{n_{c},l-}
ight]$

$$\hat{V}_{n_{c}lj} = (U_{n_{c}lj} - U_{lj})\tilde{P}_{n_{c}lj} + \tilde{P}_{n_{c}lj}(U_{n_{c}lj} - U_{lj}) - \sum_{n'_{c}}\tilde{P}_{n_{c}lj}\left[\frac{U_{n_{c}lj} + U_{n'_{c}lj}}{2} - U_{lj}\right]\tilde{P}_{n'_{c}lj}$$

A. V. Titov, N. S. Mosyagin, IJQC 71, 359 (1999)

Example: uranium atom in the SCF approximation

Consider the 64e small core pseudopotential for the U atom:

- ▶ outercore shells: 6*sp*, 5*spd*, 4*spdf*
- ▶ valence shells: 7*sp*, 6*d*, 5*f*

Excitation energi	es, cm $^{-1}$	Absolute error, cm^{-1}								
$5f^36d^17s^2 \rightarrow$	DFB	no QED	point nuc.	no Breit	GRPP	semilocal				
$5f^37s^27p^1$	7589	-72	-40	-93	-1	-6				
$5f^36d^27s^1$	12990	133	96	78	2	1				
$5f^36d^17s^17p^1$	17109	90	74	14	1	-9				
$5f^26d^27s^2$	4809	-169	-85	-780	52	554				
$5f^26d^27s^17p^1$	23920	-64	1	-765	53	546				
$5f^47s^2$	15634	147	75	628	-44	-407				
$5f^47s^17p^1$	30491	221	137	649	-45	-423				
$5f^{1}6d^{3}7s^{2}$	31804	-354	-175	-1675	111	1238				
$5f^{1}6d^{4}7s^{1}$	38957	-176	-49	-1552	113	1216				

Excitation energies were derived from all-electron numerical SCF calculations for the states averaged over nonrelativistic configurations. Data by N. S. Mosyagin

Intermediate conclusions

- number of s-, p-, d-electrons is changed during the electronic transition \rightarrow semilocal RPPs
- ▶ number of *f*-electrons is changed → full GRPP
- ▶ GRPP must take into account QED, Breit, and finite nuclear size effects
- ▶ the advantages of GRPP will be fully manifested in high-precision correlation calculations

However, we cannot practically use GRPP in calculations of molecules and clusters:

- MOLGEP has significant limitations (angular momentum, basis dimensionality)
- it is desirable to have access to GRPP in DIRAC

Parametrization of pseudopotentials and basis functions

• max three-center integrals $\langle \phi_A | \hat{U}_C | \phi_B \rangle$

Molecular integrals over the semilocal part

$$\hat{U} = U_L(r) + \sum_{l=0}^{L-1} \underbrace{[U_l(r) - U_L(r)]}_{\Delta U_l(r)} P_l + \sum_{l=1}^{L} \frac{2}{2l+1} U_l^{SO}(r) P_l \ell s$$

Three types of integrals to be calculated:

- 1. $\langle \phi_A | U_L(r_C) | \phi_B \rangle$
 - \rightarrow are reduced to overlap integrals and integrals over the $1/r_{c}$ and $1/r_{c}^{2}$ operators
 - ightarrow McMurchie-Davidson algorithm (re-expansion in the basis of Hermite Gaussians)

2. $\langle \phi_A | \Delta U_l(r_C) P_l | \phi_B \rangle$

- \rightarrow McMurchie-Davidson algorithm for RPP integration (re-expansion of ϕ_A and ϕ_B at the RPP center)
- \rightarrow angular integrals are evaluated analytically
- \rightarrow radial integrals are evaluated numerically on a grid + pre-screening

3. $\langle \phi_A | U_I^{SO}(r_C) P_I \ell \phi_B \rangle$

 \rightarrow similar to type 2 integrals, but angular parts are slightly different

GRPP integrals: non-local part

Integrals to be calculated:

$$\langle \phi_A | \hat{U}_{n_c l}^{AREP} P_l | \phi_B \rangle \qquad \langle \phi_A | \hat{U}_{n_c l}^{SO} P_l \mathscr{C} | \phi_B \rangle$$

After substituting expressions

$$\hat{U}_{n_{c}l}^{AREP} = \frac{l+1}{2l+1} \hat{V}_{n_{c},l+} + \frac{l}{2l+1} \hat{V}_{n_{c},l-}$$
$$\hat{U}_{n_{c}l}^{SO} = \frac{2}{2l+1} \left[\hat{V}_{n_{c},l+} - \hat{V}_{n_{c},l-} \right]$$

the problem is reduced to the calculation of integrals:

$$\langle \phi_A | \ \hat{V}_{n_c l j} \ P_I \ | \phi_B \rangle \qquad \qquad \langle \phi_A | \ \hat{V}_{n_c l j} \ P_I \ \ell \ | \phi_B \rangle$$

$$\hat{V}_{n_{c}lj} = (U_{n_{c}lj} - U_{lj}) \tilde{P}_{n_{c}lj} + \tilde{P}_{n_{c}lj} (U_{n_{c}lj} - U_{lj}) - \sum_{n'_{c}} \tilde{P}_{n_{c}lj} \left[\frac{U_{n_{c}lj} + U_{n'_{c}lj}}{2} - U_{lj} \right] \tilde{P}_{n'_{c}lj}$$

GRPP integrals: non-local part

Scalar-relativistic part $\langle \phi_A | \hat{V}_{n_c l j} P_l | \phi_B
angle$

$$|\tilde{\phi}_{n_c l j m}\rangle = R_{n_c l j}(r) S_{lm}(\hat{r}) \quad \rightarrow \quad \tilde{P}_{n_c l j} = \sum_{m} |\tilde{\phi}_{n_c l j m}\rangle \langle \tilde{\phi}_{n_c l j m}|$$

1.
$$\langle \phi_A | [U_{n_c l j} - U_{l j}] \tilde{P}_{n_c l j} P_l | \phi_B \rangle = \sum_{m=-l}^{+l} \underbrace{\langle \phi_A | U_{n_c l j} - U_{l j} | \tilde{\phi}_{n_c l j m} \rangle}_{\text{type 1 integral}} \times \underbrace{\langle \tilde{\phi}_{n_c l j m} | \phi_B \rangle}_{\text{overlap integral}}$$

2.
$$\langle \phi_A | \tilde{P}_{n_c l j} [U_{n_c l j} - U_{l j}] P_l | \phi_B \rangle = \sum_{m=-l}^{+l} \langle \phi_A | \tilde{\phi}_{n_c l j m} \rangle \underbrace{\langle \tilde{\phi}_{n_c l j m} | U_{n_c l j} - U_{l j} | \phi_B \rangle}_{\text{type 1 integral}}$$

3.
$$\langle \phi_{A} | \tilde{P}_{n_{c}lj} \left[\frac{U_{n_{c}lj} + U_{n_{c}'lj}}{2} - U_{lj} \right] \tilde{P}_{n_{c}'lj} P_{l} | \phi_{B} \rangle =$$

$$= \sum_{m=-l}^{+l} \langle \phi_{A} | \tilde{\phi}_{n_{c}ljm} \rangle \times \underbrace{\langle \tilde{\phi}_{n_{c}ljm} | \frac{U_{n_{c}lj} + U_{n_{c}'lj}}{2} - U_{lj} | \tilde{\phi}_{n_{c}'ljm} \rangle}_{\text{purely radial integral}} \times \langle \tilde{\phi}_{n_{c}'ljm} | \phi_{B} \rangle$$

GRPP integrals: non-local part Effective spin-orbit interaction $\langle \phi_A | \hat{V}_{n_c l j} P_l \mathscr{C} | \phi_B \rangle$

4.
$$\langle \phi_A | [U_{n_c l j} - U_{l j}] \tilde{P}_{n_c l j} P_l \boldsymbol{\ell} | \phi_B \rangle = \sum_{m=-l}^{+l} \underbrace{\langle \phi_A | U_{n_c l j} - U_{l j} | \tilde{\phi}_{n_c l j m} \rangle}_{\text{type 1 integral}} \sum_{m'=-l}^{+l} \langle S_{l m} | \boldsymbol{\ell} | S_{l m'} \rangle \langle \tilde{\phi}_{n_c l j m'} | \phi_B \rangle$$

5.
$$\langle \phi_A | \tilde{P}_{n_c l j} \left[U_{n_c l j} - U_{l j} \right] P_l \ell' | \phi_B \rangle = \sum_{m=-l}^{+l} \langle \phi_A | \tilde{\phi}_{n_c l j m} \rangle \sum_{m'=-l}^{+l} \langle S_{l m} | \ell' | S_{l m'} \rangle \underbrace{\langle \tilde{\phi}_{n_c l j m'} | U_{n_c l j} - U_{l j} | \phi_B \rangle}_{\text{type 1 integral}}$$

$$\begin{aligned} \mathbf{6.} \ \langle \phi_{A} | \ \tilde{P}_{n_{c}lj} \ \left[\frac{U_{n_{c}lj} + U_{n_{c}'lj}}{2} - U_{lj} \right] \tilde{P}_{n_{c}'lj} P_{l} \boldsymbol{\ell} \ |\phi_{B}\rangle = \\ &= \sum_{m=-l}^{+l} \langle \phi_{A} | \tilde{\phi}_{n_{c}ljm} \rangle \times \underbrace{\langle \tilde{\phi}_{n_{c}ljm} | \frac{U_{n_{c}lj} + U_{n_{c}'lj}}{2} - U_{lj} | \tilde{\phi}_{n_{c}'ljm} \rangle}_{\text{purely radial integral}} \times \sum_{m'=-l}^{+l} \langle S_{lm} | \boldsymbol{\ell} | S_{lm'} \rangle \langle \tilde{\phi}_{n_{c}'ljm} | \phi_{B} \rangle \end{aligned}$$

Implementation of GRPP integrals: the libgrpp library

		scalar	spin-orbit	outercore	open source	written in
ARGOS	1981	+	+	_	+	Fortran
MOLGEP	1991	+	+	+	-	Fortran
Turbomole	2005	+	+	_	-	Fortran
libECP	2015	+	_	_	+	С
libecpint	2021	+	_	_	+	C++
libgrpp	2022	+	+	+	+	С

- **libgrpp** is written from scratch in C99
- no restrictions on maximum angular momenta of GRPP and basis functions
- analytic gradients of GRPP integrals
- libgrpp is inserted into the home version of DIRAC!

Implementation of GRPP integrals: the libgrpp library

🖟 aoleynichenko	/libgrpp Public				♀ Pin	Ÿ Fork 0 ▼ ☆ Star 1 ▼		
↔ Code ⊙ Issues	11 Pull requests 🕞 Actions 🖽	Projects 🖽 Wiki 🛈 Security 🗠	Insights 🕸 Settings					
	₽ main + ₽ 1 branch ⊗0 tags		Go to file Add file	• Code •	About	®		
	noleynichenko new license: LGPL		icda3f6 yesterday	17 commits	A library for the evaluatio molecular integrals of the	n of 9 generalized		
	🖿 libgrpp	grpp gradients		3 weeks ago	over Gaussian functions			
	🖿 test	command-line args for test_libgrpp_c		3 weeks ago	🛱 Readme			
	test_libgrpp_c	command-line args for test_libgrpp_c		3 weeks ago	4 LGPL-2.1 license			
	test_libgrpp_f90	overlap and nucattr integrals in the test p	rograms	last month	☆ 1 star			
	🗅 .gitignore	command-line args for test_libgrpp_c		3 weeks ago	V 0 forks			
	CMakeLists.txt	grpp gradients		3 weeks ago	-			
	LICENSE	new license: LGPL		yesterday	Releases			
README.md		Update README.md		3 weeks ago	No releases published			
					Create a new release			
	E README.md			Ø				
	libgrpp			Packages No packages published Publish your first package				
	A library for the evaluation of mol- (GRPP) over Gaussian functions.	ecular integrals of the generalized rela	Languages					

https://github.com/aoleynichenko/libgrpp

Implementation of GRPP integrals: the libgrop library

relativistic coupled cluster theory: excited states: heavy-element compounds: high-precision electronic structure modeling: thorium oxide: uranium dioxide

15, 197. https://doi.org/10.3390/ sym15010197 Academic Editor: Markus Meringer accuracy assessment of generalized pseudopotentials in molecular problems

Bibliography: successful molecular applications of GRPPs (pseudopotential integrals were calculated using MOLGEP)

2001	HgH , HgH^+	N. S. Mosyagin et al, J. Chem. Phys. 115, 2007 (2001)
2002	TIF	A. N. Petrov et al, <i>Phys. Rev. Lett.</i> 88, 073001(2002)
2005	HI^+	T. A. Isaev et al, <i>Phys. Rev. Lett.</i> 95, 163004 (2005)
2005	PbO	A. N. Petrov et al, <i>Phys. Rev. A</i> 72, 022505 (2005)
2006	CnH , CnH^+	N. S. Mosyagin et al, J. Chem. Phys. 124, 224302 (2006)
2009	TIF^-	L. V. Skripnikov et al, Opt. Spectrosc. 106, 790 (2009)
2009	Yb_2	N. S. Mosyagin et al, arXiv:0901.0077v5 [physics.chem-ph] (2009)
2013	Ca_2	N. S. Mosyagin et al, Int. J. Quantum Chem. 113, 2277 (2013)
2013	RaO	A. D. Kudashov et al, Phys. Rev. A 87, 020102(R) (2013)
2013	ThO	L. V. Skripnikov et al, J. Chem. Phys. 139, 221103 (2013)
2014	RaF	A. D. Kudashov et al, Phys. Rev. A, 90, 052513 (2014)

it works well for s, p, d-elements... what about actinides?

How to assess an accuracy of GRPP?

Problem: taking into account QED and Breit in 4c calculations is extremely difficult

Solution: to construct a special GRPP for testing only (N. S. Mosyagin)

- + atomic Dirac-Hartree-Fock-Gaunt calculation (4c)
- + Gaussian nuclear charge distribution (instead of Fermi)
- retardation
- QED contributions

Reference 4c calculation: Dirac-Coulomb-Gaunt (DCG-x2cmmf)

more: J. Sikkema et al, J. Chem. Phys. 131, 124116 (2009); https://doi.org/10.1063/1.3239505

Correlation calculations:

- relativistic Fock space coupled cluster method (FS-RCCSD)
- intermediate Hamiltonian for incomplete model spaces (IH-IMMS)

A. Zaitsevskii et al, IJQC, e27077 (2022), https://doi.org/10.1002/qua.27077

the EXP-T program package

http://qchem.pnpi.spb.ru/expt

Vertical excitation energies of ThO

FS-RCCSD scheme: $\text{ThO}^{2+}(0h0p) \rightarrow \text{ThO}^+(0h1p) \rightarrow \text{ThO}(0h2p)$ Active space: 24 lowest virtual Kramers pairs of ThO^{2+} Main model space: CAS 2e / 12 spinors, $\approx 7s + 6d$ Th Basis set: [19s17p15c15r5g4h3f] (Th), aug-cc-pVQZ-DK (O)

Vertical excitation energies of UO₂

 $\begin{array}{l} \mathsf{FS}\operatorname{-RCCSD} \text{ scheme: } \mathsf{UO}_2^{2+} \ (0h0p) \to \mathsf{UO}_2^+ \ (0h1p) \to \mathsf{UO}_2^- \ (0h2p) \\ \mathsf{Active space: } 24 \text{ lowest virtual Kramers pairs of } \mathsf{UO}_2^{2+} \\ \mathsf{Main model space: } \approx 7s5f, \ 5f^2, \ 6d5f, \ 7p5f \ \mathsf{U} \\ \mathsf{Basis set: } \ [25s21p19d14f5g4h3i] \ (\mathsf{U}), \ \mathsf{aug-cc-pVQZ-DK} \ (\mathsf{O}) \end{array}$

Results

Deviation from DCG:

		GRPP	semilocal	DC	Ret.+QED
ThO	max abs	46	335	802	212
	rms	29	181	341	151
UO_2	max abs	110	345	767	142
	rms	51	128	316	112

- the error of GRPP is balanced for all electronic states
- ▶ the Dirac-Coulomb Hamiltonian is inherently less accurate than even a semi-local potential
- the contributions of retardation and QED effects are greater than the error of GRPP
- our future: pseudopotentials accounting for QED

GRPP seems to be the most precise Hamiltonian for real-life molecular calculations?

Results

- the libgrpp library for GRPP integrals
- Ac models are no longer necessary for studying the structure and spectra of molecules?
- all efforts must be focused on improving the (FS-)CCSDT code
- ▶ a vast field of potential applications for the GRPP method is opening up:
 - actinide molecules (UF₆, AcF, PaO⁺, ...)
 - cluster models of impurities (perovskites, ...)
 - superheavy elements

thanks to

Yu. V. Lomachuk L. V. Skripnikov Appendix

Bibliography: integral evaluation

- L. E. McMurchie, E. R. Davidson, J. Comp. Phys. 44, 289 (1981) Calculation of integrals over ab initio pseudopotentials
- R. M. Pitzer, N. W. Winter, IJQC 40, 773 (1991) Spin-orbit (core) and core potential integrals
- C.-K. Skylaris et al, CPL 296, 445 (1998)
 An efficient method for calculating effective core potential integrals which involve projection operators
- R. Flores-Moreno et al, J. Comp. Chem. 27, 1009 (2006) Half-numerical evaluation of pseudopotential integrals
- B. Gao, A. J. Thorvaldsen, K. Ruud, *IJQC* 111, 858 (2011)
 GEN1INT: A unified procedure for the evaluation of one-electron integrals over Gaussian basis functions and their geometric derivatives
- R. A. Shaw, J. G. Hill, JCP 147, 074108 (2017) Prescreening and efficiency in the evaluation of integrals over ab initio effective core potentials
- A. V. Oleynichenko, A. Zaitsevskii, N. S. Mosyagin, A. N. Petrov, E. Eliav, A. V. Titov, Symmetry, 15, 197 (2023)

LIBGRPP: A library for the evaluation of molecular integrals of the generalized relativistic pseudopotential operator over Gaussian functions

Gatchina pseudopotentials

Effective potentials and basis sets																		
Group #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period 1	1 H																	2 He
	a Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	•	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
8	119	120																
¹ Lanthanides 57 58 59 60 61 62 63 64 65 66 La Ce Pr Nd Pm Sm Eu Gd Tb Dy						66 Dy	67 Ho	68 Er	⁶⁹ Tm	Yb	Lu							
** Actinid	es		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	
•••			121	122	123													

https://github.com/aoleynichenko/libgrpp

Gatchina pseudopotentials

GRPP file format

$\begin{array}{c} 6 & 1 \\ 453, 8239473297523 \\ 81, 78392245467846 \\ 21, 8375607682710 \\ 41, 833246025189854 \\ 0, 70909573793096529 \\ 0 \\ 2 \\ 0, 7090957379096529 \\ 0 \\ 2 \\ 1, 7930973906529 \\ 1, 7933973906529 \\ 1, 79339144650293 \\ 1, 79339144650293 \\ 1, 79339144650293 \\ 1, 79339144650293 \\ 1, 79339144650293 \\ 1, 79339144650293 \\ 1, 79339147135130 \\ 0, 13109039771152526 \\ 0, 310090397715525 \\ 0, 310090397715525 \\ 0, 310090397715525 \\ 0, 310090397715525 \\ 0, 310090397715525 \\ 0, 310090397715525 \\ 0, 310090397715525 \\ 0, 310090397715525 \\ 0, 310090397715525 \\ 0, 310090397715525 \\ 0, 310090397715525 \\ 0, 310090397715525 \\ 0, 310090397715525 \\ 0, 310090397715525 \\ 0, 310090397715555 \\ 0, 310090597755 \\ 0, 310090597755 \\ 0, 310090597755 \\ 0, 310090597755 \\ 0, 310090597755 \\ 0, 310090597755 \\ 0, 31009555 \\ 0, 31009557 \\ 0, 31009557 \\ 0$	$\begin{array}{c} 2.52/2\\ 0.55407590573817758404E-002\\ 0.5407590573817758404E-002\\ 0.540579304275149425\\ 0.4250494251\\ 0.4250494378415840\\ 0.4250494378415840\\ 0.425049437841590720\\ 0.121238172\\ 0.121238172\\ 0.12123817238425\\ 0.12123817239845845\\ 0.121238172939865284\\ 0.131238173993865284\\ 0.131238173993865284\\ 0.131238173993865284\\ 0.131238173993865284\\ 0.131238173993865284\\ 0.1312381739934\\ 0.328239379941309652\\ 0.131379041309672\\ 0.131379041309672\\ 0.131379041309672\\ 0.049617999017207874\\ 0.049617999017207874\\ 0.0496179901720787\\ 0.0496179901720784\\ 0.04074290784\\ 0.04074984\\ 0.0407482984\\ 0.0407482984\\ 0.0407482984\\ 0.0407489284\\ 0.0407482984\\ 0.0407482984\\ 0.0407482984\\ 0.0407482984\\ 0.0407482984\\ 0.0407482984\\ 0.0407482984\\ 0.0407482984\\ 0.0407482984\\ 0.040748984\\ 0.0407482984\\ 0.040748284\\ 0.0407488284\\ 0.0407482884\\ 0.040748284\\ 0.0407488284\\ 0.040748284\\ 0.04074828$	28/27/2002/2002/2002/2002/2002/2002/2002	12e-GRECP for Si by N.S.Mosyagin from 05.12.20 Pseudospinors from the 3s^2 3p^1 state
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25-AEE 1.0000000000000 1.0000000000000 4.32076325654665 4.32076325654665 1.767695976615611 1.76796976615611 1.747799130695021 1.747799945169324 1.77799154195780 0.0 0.0 0.0 0.0	0.0000000000000 0.000000000 0.00000000	251/2 0.0000000000000 0.0000000000000 0.000000
13 2 6117 602653549006 1 783.9977608773247 1 233.47769873696 1 233.47759837666 2 3.7556775937666 2 .338587537166 2 .338567537166 2 .9369671669105433-0056109543 0 .934359766109543 2 .036325271922563 4 .60671549419925 2 .0873528719925663 1 .08735283689292	3P-AEE 0.420688006773621 0.60227006773621 0.60227006773691 0.575555818182215 0.82221980773691 1.110657687332 0.4855751106136452E-00 0.42405725607256075 0.4240572560725607 0.42405725607 0.42405725607 0.42405725607 0.42405725607 0.42405725607 0.42405725607 0.42405725607 0.42405725607 0.4440575607 0.444057677 0.4440575607 0.44	2P-E50P 0.479646972317522 1.669775382167485 0.849755405346133-00 0.799909023143434872-001 0.7971159916844886-001 0.8499534587349485-001 0.8495934587394885-001 0.1472932623499925-003 0.77763401312989855-005	25/1/2 25/2/ 0.0000000000000000000000000000000000

The McMurchie-Davidson scheme for type 2 integrals

Basic idea: re-expansion of the ϕ_A and ϕ_B basis functions at the point C at which the pseudopotential operator is centered

$$\langle \phi_{A} | \Delta U_{l}(r) P_{l} | \phi_{B} \rangle = \int_{0}^{\infty} \sum_{m} \langle \phi_{A} | S_{lm} \rangle_{\Omega} \cdot \Delta U_{l}(r) \cdot \sum_{m'} \langle \phi_{B} | S_{lm'} \rangle_{\Omega'} r^{2} dr =$$

$$= 16\pi^{2} \sum_{a=0}^{n_{A}} \sum_{b=0}^{l_{A}} \sum_{c=0}^{m_{B}} \sum_{d=0}^{n_{B}} \sum_{e=0}^{l_{B}} \sum_{f=0}^{m_{B}} \binom{n_{A}}{a} \binom{l_{A}}{b} \binom{m_{A}}{c} \binom{n_{B}}{d} \binom{l_{B}}{e} \binom{m_{B}}{f} \times$$

$$\times CA_{x}^{n_{A}-a} CA_{y}^{l_{A}-b} CA_{z}^{m_{A}-c} CB_{x}^{n_{B}-d} CB_{y}^{l_{B}-e} CB_{z}^{m_{B}-f} \times$$

$$\times \sum_{\lambda_{1}}^{\lambda_{1,\max}} \sum_{\lambda_{2}}^{\lambda_{2,\max}} \underbrace{T_{\lambda_{1}\lambda_{2}}^{a+b+c+d+e+f}(\phi_{A},\phi_{B})}_{radial type 2 integral} \times \sum_{m=-l}^{l} \underbrace{\Omega_{\lambda_{1}lm}^{abc}(\hat{k}_{A}) \Omega_{\lambda_{2}lm}^{def}(\hat{k}_{B})}_{angular type 2 integrals}$$

$$\hat{k}_A = rac{CA}{|CA|}, \quad \hat{k}_B = rac{CB}{|CB|}, \quad CA = C - A, \quad CB = C - B$$

 $P_l =$

Angular type 2 integrals

USPs integrals:

Angular integrals are evaluated analytically:

$$\Omega_{\lambda lm}^{abc}(\hat{k}) = \sum_{\mu=-\lambda}^{+\lambda} S_{\lambda\mu}(\hat{k}) \sum_{rst}^{\lambda} \sum_{uvw}^{l} y_{rst}^{\lambda\mu} y_{uvw}^{lm} \int \hat{x}^{a+r+u} \hat{y}^{b+s+v} \hat{z}^{c+t+w} d\hat{r}$$

• The value of a real spherical harmonic $S_{\lambda\mu}$ at the \hat{k} point:

$$\mathcal{S}_{\lambda\mu}(\hat{k}) = \sum_{rst}^{\lambda} y_{rst}^{\lambda\mu} \ \hat{k}_x^r \hat{k}_y^s \hat{k}_z^t$$

$$\int \hat{x}^{i} \hat{y}^{j} \hat{z}^{k} d\hat{r} = \begin{cases} 4\pi \frac{(i-1)!! \ (j-1)!! \ (k-1)!!}{(i+j+k+1)!!} & \text{if } i, \ j, k \text{ even} \\ 0 & \text{otherwise} \end{cases}$$

L. E. McMurchie, E. R. Davidson, J. Comp. Phys. 44, 289 (1981)

Angular type 2 integrals

The y_{rst}^{lm} coefficients are calculated using the formula:

$$y_{rst}^{lm} = \sqrt{\frac{2l+1}{2\pi} \frac{(l-|m|)!}{(l+|m|)!}} \frac{1}{2^l l!} \sum_{i=j}^{(l-|m|)/2} \binom{l}{i} \binom{i}{j} \frac{(-1)^i (2l-2i)!}{(l-|m|-2i)!} \times \\ \times \sum_{k=0}^j \binom{j}{k} \binom{|m|}{r-2k} (-1)^{(|m|-r+2k)/2} \times \\ \times \begin{cases} 1 & m > 0 \text{ and } |m| - r \text{ even} \\ 1/\sqrt{2} & m = 0 \text{ and } r & \text{ even} \\ 1 & m < 0 \text{ and } |m| - r \text{ odd} \\ 0 & \text{ otherwise} \end{cases}$$

j=(r+s-|m|)/2

libgrpp calculates y_{rst}^{lm} only once and then stores them in a table

R. Flores-Moreno et al, J. Comp. Chem. 27, 1009 (2006)

Radial type 2 integrals

Radial type 2 integral:

$$T^N_{\lambda_1\lambda_2}(\phi_A,\phi_B) = \int_0^\infty r^{N+2} \Delta U_l(r) \ F^{\lambda_1}_A(r) F^{\lambda_2}_B(r) \ dr$$

• Auxiliary functions $F_A^{\lambda}(r)$ and $F_B^{\lambda}(r)$ allow one to work directly with contracted basis functions:

$$F_A^{\lambda}(r) = \sum_i c_i N_i e^{-\alpha_i |CA|^2 - k_{Ai} r^2} M_{\lambda}(k_{Ai} r)$$

 $M_{\lambda}(x)$ – spherical modified Bessel functions

 $k_{Ai} = 2\alpha_{Ai} |CA|$

▶ It is more convenient to use scaled Bessel functions $K_{\lambda}(x) = e^{-x}M_{\lambda}(x)$:

$$F_A^{\lambda}(r) = \sum_i c_i N_i \cdot e^{-\alpha_{Ai} |CA|^2 - k_{Ai} r^2 + k_{Ai} r} K_{\lambda}(k_{Ai} r)$$

R. Flores-Moreno et al, J. Comp. Chem. 27, 1009 (2006)

Radial type 2 evaluation

Scaled modified spherical Bessel functions $K_{\lambda}(x)$

Radial type 2 integrals The Log3 quadrature

Integral to be evaluated:

$$I = \int_0^{+\infty} f(r) r^2 dr \approx \sum_i^{n_r} w_i f(r_i)$$

Radial grid consists of n_r points:

$$x_i = rac{i}{n_r + 1}, \quad x_i \in (0, 1)$$
 $r_i = -lpha \ln(1 - x_i^3), \quad r_i \in (0, +\infty)$ $w_i = rac{3lpha^3 x_i^2 \ln^2(1 - x_i^3)}{(1 - x_i^3)(n_r + 1)}$

When expanding the grid to $n_r^{(2)} = n_r^{(1)} + 1$ radial points:

$$I^{(2)} \approx \frac{I^{(1)}}{2} + \sum_{i=1,3,5,\dots}^{n_r^{(2)}} w_i f(r_i)$$

The radial integral can be computed with any required accuracy!

Radial type 2 integrals

The McMurchie-Davidson scheme for type 3 integrals (spin-orbit operator

$$\langle \phi_{A} | U_{l}^{SO}(\mathbf{r}) P_{l} \mathscr{C} P_{l} | \phi_{B} \rangle = i^{-1} \int \phi_{A}(\mathbf{r}) \ U_{l}^{SO}(\mathbf{r}_{C}) \left(\sum_{m} |S_{lm}\rangle \langle S_{lm}| \right) \mathscr{C} \left(\sum_{m} |S_{lm}\rangle \langle S_{lm}| \right) \phi_{B}(\mathbf{r}) \ d\mathbf{r}_{C} =$$

$$= 16\pi^{2} \sum_{a=0}^{n_{A}} \sum_{b=0}^{l_{A}} \sum_{c=0}^{m_{A}} \sum_{d=0}^{n_{B}} \sum_{e=0}^{l_{B}} \sum_{f=0}^{m_{B}} \binom{n_{A}}{a} \binom{l_{A}}{b} \binom{n_{A}}{c} \binom{n_{B}}{d} \binom{l_{B}}{e} \binom{n_{B}}{e} \binom{m_{B}}{f} \times$$

$$\times CA_{x}^{n_{A}-a} CA_{y}^{l_{A}-b} CA_{z}^{m_{A}-c} CB_{x}^{n_{B}-d} CB_{y}^{l_{B}-e} CB_{z}^{m_{B}-f} \times$$

$$\times \sum_{\lambda=0}^{\lambda_{1,\max}} \sum_{\bar{\lambda}=0}^{\lambda_{2,\max}} T_{\lambda\bar{\lambda}}^{a+b+c+d+e+f} (\phi_{A},\phi_{B}) \times \sum_{m=-l}^{+l} \sum_{m'=-l}^{+l} \Omega_{\lambda lm}^{abc}(\hat{k}) \ \Omega_{\bar{\lambda}lm}^{def}(\hat{k}) \ \langle S_{lm} | \mathscr{C} | S_{lm'} \rangle$$

radial type 2 integrals

- angular type 2 integrals
- ▶ integrals of the angular momentum operator ℓ in the basis of real spherical harmonics S_{lm}

Data structures: pseudopotentials

$$U_{lj}(r) = \sum_{k} d_k r^{n_k-2} e^{-\zeta_k r^2}$$

1 typedef struct {
2 int L;
3 int J;
4 int num_primitives;
5 int *powers;
6 double *coeffs;
7 double *alpha;

```
8 } libgrpp_potential_t;
```

```
1 // constructor
2 libgrpp_potential_t *libgrpp_new_potential(
3    int L, int J, int num_primitives, int *powers, double *coeffs, double *alpha
4 );
5    // destructor
7 void libgrpp_delete_potential(libgrpp_potential_t *potential);
```

Data structures: the full GRPP operator

```
typedef struct {
2
      int n_arep;
3
      int n esop:
4
      int n oc shells:
5
      libgrpp_potential_t *U_L;
6
      libgrpp_potential_t **U_arep; // semi-local scalar-relativistic potential
7
      libgrpp_potential_t **U_esop;
8
      libgrpp_potential_t **U_oc;
                                      // outercore potentials
9
      libgrpp_shell_t **oc_shells;
10
  } libgrpp grpp t:
```

```
1 // constructor

2 libgrpp_grpp_t *libgrpp_new_grpp();

3 

4 // destructor

5 void libgrpp_delete_grpp(libgrpp_grpp_t *);

6 

7 void libgrpp_grpp_set_local_potential(libgrpp_grpp_t *grpp, libgrpp_potential_t *pot);

8 void libgrpp_grpp_add_averaged_potential(libgrpp_grpp_t *grpp, libgrpp_potential_t *pot);

9 void libgrpp_grpp_add_spin_orbit_potential(libgrpp_grpp_t *grpp, libgrpp_potential_t *pot);

10 void libgrpp_grpp_add_outercore_potential(

11 libgrpp_grpp_t *grpp, libgrpp_potential_t *pot, libgrpp_shell_t *oc_shell

12 );
```

Data structures: shells of Cartesian basis functions

$$\phi_A(\mathbf{r}) = \sum_i c_i \ N_i \ x_A^n y_A^j z_A^m \ e^{-\alpha_i |\mathbf{r} - \mathbf{A}|^2}$$

1 typedef struct {
2 int L;
3 int cart_size;
4 int *cart_list;
5 int num_primitives;
6 double *coeffs;
7 double *alpha;
8 double origin[3];
9 } libgrpp_shell_t;

```
1 // constructor
2 libgrpp_shell_t *libgrpp_new_shell(
3   double *origin, int L, int num_primitives, double *coeffs, double *alpha
4 );
5
6 // destructor
7 void libgrpp_delete_shell(libgrpp_shell_t *shell);
```

Example: the *d*-shell cart_size = 6 cart_list = $\begin{bmatrix} 2, 0, 0, & 1, 1, 0, & 1, 0, 1, & 0, 2, 0, & 0, 1, 1, & 0, 0, 2 \end{bmatrix}$

The libgrpp library programming interface Padially local integrals $\langle \phi_1 | U(r) | \phi_2 \rangle$

Radially-local integrals $\langle \phi_A | U(r) | \phi_B \rangle$

```
C:

void libgrpp_type1_integrals(

libgrpp_shell_t *shell_A, libgrpp_shell_t *shell_B,

double *rpp_origin, libgrpp_potential_t *potential,

double *matrix

5 );
```

Example: integrals for the d/f shell pair:

	I XXX	1 _{XXY}	XXZ	•xyy	1 _{XYZ}	XZZ	уууу	'yyz	l yzz	ZZZ
d_{xx}			[3]	[4]	[5]		[7]	[8]		[10]
d_{xv}	[11]	[12]	[13]	[14]	[15]	[16]	[17]	[18]	[19]	[20]
d _{xz}	[21]	[22]	[23]	[24]	[25]	[26]	[27]	[28]	[29]	[30]
d_{vv}	[31]	[32]	[33]	[34]	[35]	[36]	[37]	[38]	[39]	[40]
d_{yz}	[41]	[42]	[43]	[44]	[45]	[46]	[47]	[48]	[49]	[50]
d _{zz}	[51]	[52]	[53]	[54]	[55]	[56]	[57]	[58]	[59]	[60]

The libgrpp library programming interface Radially-local integrals $\langle \phi_A | U(r) | \phi_B \rangle$

21

Fortran 90:

```
subroutine libgrpp_type1_integrals(
1
      origin A. L.A. num primitives A. coeffs A. alpha A.
      origin_B, L_B, num_primitives_B, coeffs_B, alpha_B, &
4
      rpp_origin, rpp_nprim, rpp_pow, rpp_coef, rpp_alpha, &
5
      matrix
6
7
8
  integer(4) :: L_A, num_primitives_A
  real(8)
           :: origin A(*), coeffs A(*), alpha A(*)
10
  integer(4) :: L B. num primitives B
  real(8)
          :: origin_B(*), coeffs_B(*), alpha_B(*)
14
15
16
  integer(4) :: rpp_nprim, rpp_pow(*)
17
18 real(8) :: rpp_origin(*), rpp_coef(*), rpp_alpha(*)
19
20
21
  real(8) :: matrix(*)
```

Integrals with angular projectors $\langle \phi_A | \Delta U_l(r) P_l | \phi_B \rangle$

C:

```
void libgrpp_type2_integrals(
    libgrpp_shell_t *shell_A, libgrpp_shell_t *shell_B,
    double *rpp_origin, libgrpp_potential_t *potential,
    double *matrix
5 );
```

Fortran 90:

The libgrpp library programming interface Semi-local spin-orbit integrals: $\langle \phi_A | U_i^{SO}(r) P_i \mathscr{C} P_i | \phi_B \rangle$

C:

```
void libgrpp_spin_orbit_integrals(
    libgrpp_shell_t *shell_A, libgrpp_shell_t *shell_B,
    double *rpp_origin, libgrpp_potential_t *potential,
    double *so_x_matrix, double *so_y_matrix, double *so_z_matrix
5 );
```

Fortran 90:

1 subroutine libgrpp_spin_orbit_integrals(
2 origin_A, L_A, num_primitives_A, coeffs_A, alpha_A, &
3 origin_B, L_B, num_primitives_B, coeffs_B, alpha_B, &
4 rpp_origin, rpp_ang_momentum, rpp_num_primitives, &
5 rpp_powers, rpp_coeffs, rpp_alpha, &
6 so_x_matrix, so_y_matrix, so_z_matrix &
7)

Non-local integrals (with projectors onto outercore shells): $\langle \phi_A | \hat{U}_{n_c l}^{AREP} P_l | \phi_B \rangle$ and $\langle \phi_A | \hat{U}_{n_c l}^{SO} P_l \ell P_l | \phi_B \rangle$

```
C:

void libgrpp_outercore_potential_integrals(

libgrpp_shell_t *shell_A, libgrpp_shell_t *shell_B,

double *rpp_origin, int num_oc_shells,

libgrpp_potential_t **oc_potentials, libgrpp_shell_t **oc_shells,

double *arep, double *so_x, double *so_y, double *so_z

);
```

Fortran 90:

1	<pre>subroutine libgrecp_outercore_potential_integrals(</pre>	&z
2	origin_A, L_A, num_primitives_A, coeffs_A, alpha_A,	&
3	origin_B, L_B, num_primitives_B, coeffs_B, alpha_B,	&
4	<pre>ecp_origin, num_oc_shells, oc_shells_L, oc_shells_J,</pre>	\$
5	<pre>ecp_num_primitives, ecp_powers, ecp_coeffs, ecp_alpha,</pre>	&
6	<pre>oc_shells_num_primitives, oc_shells_coeffs, oc_shells_alpha,</pre>	&
7	arep_matrix, so_x_matrix, so_y_matrix, so_z_matrix	&
8		

$$\hat{V}_{n_{c}lj} = (U_{n_{c}lj} - U_{lj})\tilde{P}_{n_{c}lj} + \tilde{P}_{n_{c}lj}(U_{n_{c}lj} - U_{lj}) - \sum_{n_{c}'}\tilde{P}_{n_{c}lj}\left[\frac{U_{n_{c}lj} + U_{n_{c}'lj}}{2} - U_{lj}\right]\tilde{P}_{n_{c}'lj}$$

The libgrpp library programming interface Integrals over the full GRPP operator (C only): $\langle \phi_A | \hat{U}^{GRPP} | \phi_B \rangle$

C:

```
void libgrpp_full_grpp_integrals(
    libgrpp_shell_t *shell_A, libgrpp_shell_t *shell_B,
    libgrpp_grpp_t *grpp_operator, double *grpp_origin,
    double *arep_matrix, double *so_x_matrix, double *so_y_matrix, double *so_z_matrix
5 );
```

The libgrpp library programming interface Analytic gradients of GRPP integrals (C only)

$$rac{d}{dm{R}}ig\langle \phi_A | \hat{U}^{GRPP} | \phi_B
angle$$

C:

```
void libgrpp_full_grpp_integrals_gradient(
    libgrpp_shell_t *shell_A, libgrpp_shell_t *shell_B,
    libgrpp_grpp_t *grpp_operator, double *grpp_origin,
    double *point_3d, // derivative wrt this point
    double **grad_arep, double **grad_so_x, double **grad_so_y, double **grad_so_z
    );
```