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Abstract

We present an accurate ab initio method of calculating transition energies and isotope shifts in
the 3d-transition metals. It extends previous work that combines the configuration-interaction
calculation with many-body perturbation theory by including the effective three-body
interaction and modification of the energy denominator. We show that these effects are of
importance in Ti II. The need to develop methods that can accurately calculate isotope shifts in
3d-transition metals comes from studies of quasar absorption spectra that seek to measure
possible variation of the fine-structure constant « over the lifetime of the universe. An isotope
shift can also be used to measure isotope abundances in gas clouds in the early universe, which

are required in order to test models of chemical evolution.

1. Introduction

This work is motivated by studies of quasar absorption systems
that are designed to probe the fine-structure constant, o
e?/hc, in the early universe. By comparing the absorbed
frequencies with terrestrial measurements one can deduce
whether o has changed. Some studies report significant
deviation from zero change (e.g. [1-5]), while others do not
(e.g. [6-9]).

These studies use the ‘many-multiplet’ method [10] where
many transitions in many ions are used. This method offers
an order-of-magnitude improvement in sensitivity over the
previous ‘alkali-doublet’ method, but introduces a potential
systematic effect related to the isotope abundances of the
absorbers: the isotope abundance ratios in the absorbing
systems could be very different from those on the Earth. A
‘conspiracy’ of several differences may provide an alternative
explanation for the observed differences in spectra [11, 12].

We can resolve this problem by taking combinations
of the transition frequencies that are insensitive to either
a-variation or isotopic abundances [13]. We can then
remove the systematic effects from the «-variation studies and
simultaneously measure isotope abundances in the gas clouds.
The measured isotope abundances can then be used to test
models of chemical evolution in the universe. However, to do
this type of analysis we must know both the relativistic shift and
the isotope shift of each transition used in the analysis. While
the relativistic shifts have been calculated for all important ions
used in quasar absorption studies, there are still some gaps in
the isotope shift calculations because these are generally more
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difficult. In particular, the isotope shifts of the important Fe II
transitions are not known.

Previously, we have calculated the isotope shift in
atoms and ions with one valence electron using many-
body perturbation theory [14], and for many-valence-electron
atoms and ions using a combination of configuration
interaction (CI) and many-body perturbation theory (MBPT)
[15, 16]. The CI+MBPT method compares well with accurate
multiconfiguration Hartree—Fock approaches (see, e.g., carbon
calculations [17, 18] compared in [16]; Mg I calculations
[19] compared in [15]); however, we believe that our method
is more readily applicable to heavier ions, hence this study
of Ti II. This ion has additional importance because it has
been observed in quasar absorption spectra. Combined
with accurate laboratory wavelengths [20] and our previous
calculations of the relativistic shift [21], Ti II may be a useful
probe of «-variation.

In this study we extend our previous work on the
calculation of energy and isotope shift using the CI+MBPT
method by including the effective three-body second-order
MBPT operator (section 3.1) and varying the MBPT energy
denominator (section 3.2). We show that these effects are
of some importance in Ti II, and will probably prove to
be of importance for all 3d-transition metals. In section 4
we extract isotope-shift constants from experiment in order
to benchmark our theory. This experiment is of particular
interest due to the lack of isotope-shift data for ionized 3d
elements. Our final results are presented in section 5 along with
predictions for astronomically relevant transitions. Atomic
units (h = e = m, = 1) are used throughout this paper except
where otherwise stated.
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2. Method

The isotope shift of an atomic transition comes from two
sources: the nuclear recoil (‘mass shift’) and the finite size
of the nuclear charge distribution (‘field shift’). The mass
shift is more important for light elements, while for heavy
elements the field shift dominates. In the case of Ti II, the
field shift is small (we estimate it in section 4.1); this paper
is concerned with the mass-shift contribution, which is more
difficult to calculate.

Recoil of a nucleus of mass M causes a level energy shift

ﬁ_i 242_LZ 2+LZ,. . (1)
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The first term on the right-hand side is known as the normal
mass shift (NMS), while the second is the specific mass shift
(SMS). We use the non-relativistic form of the mass-shift
operator; relativistic corrections for optical transitions in light
atoms are of the order of few per cent and can be neglected
[22]. We calculate the frequency shift of a transition between
two isotopes with mass numbers A and A’ as

SpAA = A A

1 1 ,
= (knwms + ksms) <— - —) +Fs(rH)M 4. ()

A A
The normal-mass-shift constant is easily calculated from the
transition frequency: kxms = —v /1823, where the value 1823

refers to the ratio of the atomic mass unit to the electron mass.
The last term in this equation is the field-shift component
which depends on the change in mean-square nuclear radius
(r?) and the field-shift constant F, calculated in section 4.1.
To calculate the specific-mass-shift constant, ksyms, we
use the all-order finite-field scaling method. Here a rescaled
two-body SMS operator is added to the Coulomb potential
everywhere that it appears in an energy calculation:

0 = ———— +Ap1-P2. 3)
Iri —ra
We recover the specific-mass-shift constant as
dw

ol @

ksms =
The operator O has the same symmetry and structure as the
Coulomb operator (see appendix A in [16]).

3. Energy calculation

To calculate energies, and hence transition frequencies, we
use the CI+MBPT method [23] implemented with the atomic
structure package AMBIT. This package was previously used
to calculate isotope shifts in Mg I [15] and carbon ions [16].
It is presented in detail in [16]; here we will present only the
salient points of the calculation as well as some extensions
that go beyond what was done in [16] (it should be noted,
however, that these extensions have previously been proposed
in [23]).

The first step is to solve the Dirac—Fock equations for
the core and valence electrons. From this we generate a
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Figure 1. Effective three-valence-electron interaction of X.

single-particle basis set that includes the core and valence
states and a large number of virtual states. Then we do the
full configuration-interaction (CI) calculation in the frozen-
core approximation. Here the many-electron wavefunction is
expressed as a linear combination of Slater determinants |/)

Y=Y Cl),

where the C; are obtained from the eigenvalue problem

Y HiCy=EC 5)
J
and H is the CI Hamiltonian.

Core-valence correlation effects (that necessarily go
beyond the frozen-core approximation) are included using an
MBPT operator X, which is added to the CI Hamiltonian (see
section 3 of [16]). In this paper we calculate ¥ to second
order in the operator Q (equation (3)), leading to the modified
eigenvalue problem

(I|1H|M)(M|H|J)
XJ:<H11+%: EC L, )C,:EC,. (6)

The states |M) include all Slater determinants of the single-
particle basis that have core excitations. We further separate
the MBPT operator into one-valence-electron and two-
valence-electron parts X and =@, respectively. Goldstone
diagrams and analytical expressions for these are given in [16].
All diagrams are included in the current work, including the
box diagrams of X£® which have the ‘wrong’ multipolarity
of the Coulomb interaction and were deliberately excluded
from [16].

3.1. Effective three-body interaction ©®

It is mentioned in [16] that there exists in the second order of
perturbation theory an effective three-body interaction, where
three valence electrons interact via the core, represented by a
Goldstone diagram (figure 1) with three external lines.

The diagrams of this type are quick to calculate: there is
only one internal summation and no summation over virtual
states. However, the number of corresponding effective radial
integrals is huge, and storage is not possible. Therefore
we generate these diagrams as required and seek a way of
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Table 1. Extraction of the specific mass shift constant, ksys, from experiment. All isotope shift components are in MHz; kgys is in GHz
amu. Our calculation of the field-shift (FS) contribution is presented in section 4.1.

Transition AMA) Isotopes IS (Expt.) NMS FS SMS ksms (GHz amu)
3d*4s4Fy/, — 3d%4p “F‘g’/2 3235 4648 746 (8) 460 43 (19) 243 (27) —268 (30)
46-50 1452 (10) 884 103 (21) 465 (31) —267 (18)
3d*4s*Fy), — 3d24p4G’1’1/2 3350 46-48 725 (150) 445 43 (19) 237 (169) —262 (187)
46-50 1425 (150) 854 103 (21) 468 (171) —269 (98)
restricting them. In practice, we only need to include orbitals —
from the leading configurations. For the Ti II transitions we Transition Isotope couple 1S (MHz)
are interested in this means that we only need to include 3d%4s *Fo,-3d°4p*Fy, 4648 746 (8)
¥ in equation (6) when either |I) or |J) represent 3d*4s - L 46-50 1452 (10)
or 3d*4p terms. In fact, the majority of the contribution 3d°4s"Fyp-3d°4p~Gy;, 4648 441(6)
46-50 847 (7)

comes from the case where both |I) and |J) represent leading
configurations.

3.2. Variation of energy denominator in perturbation theory

Another open question in the CI+ MBPT method is how to deal
with the energy denominator in equation (6). This question
is discussed in detail in [24]; see also [23, 25]. The basic
problem is that we must make some approximation to E in
the energy denominator in order to generate the modified
matrix elements before solving the eigenvalue problem and
obtaining the energy spectrum E. Two reasonable formalisms
are the Rayleigh—Schrddinger (RS) and Brillouin—Wigner
(BW) perturbation theories.

In [16] we used a BW method where all connected
diagrams are evaluated at energies that correspond to the main
configuration (i.e. the lowest valence energy). It is similar to
taking an average (Dirac—Fock) energy of the states for E. In
this paper we explore just one method of extending this, where
we add a constant § to every energy denominator:

1 1
—> .

Our idea is to make the energy E closer to the valence electron
energy; to this effect we take § = E¢!/ — EPF for the ground-
state energy. In effect, this ‘corrects’ E for the ground state,
replacing the Dirac—Fock value with the CI energy. In our case
8 ~ —0.69; we alter it depending on the values of E and
EPF which in turn depend on the particulars of the calculation,
and in particular on the SMS coefficient A (equation (3)). Note
that this shift can be further justified on rather general grounds
because it restores the correct asymptotic behaviour in the BW
theory for a large number of particles [24].

4. Analysis of experiment

We compare our calculations to the Doppler-free spectroscopy
measurements made by Gianfrani e al [26]. They have made
measurements of the 3d*4s *Fo ,—3d*4p *F§ ,, and 3d*4s *Fy»—
3d%4p*GY, /2 transitions for the isotope pairs 4648 and 46-50.
Their results are presented in table 2 of [26]; they record the
following:

However when one looks at the raw data for these
measurements (figure 4 in [26]), it is clear that there is a
misprint in the second transition: one may easily see that
the 4G‘l’1 /2 isotope shift is only very slightly smaller than the
3d*4p*Fj,,. In fact, one can take a rough reading from the
fitted Lorentzian curves of figure 4(a) and obtain § po040 —
1425(150) MHz and §v*46 = 725(150) MHz.

Additionally, a mistake seems to have been made in the
calculation of the normal mass shift. By taking the difference
between the total isotope shift and residual shift in table 2
of [26], one obtains 236.3 MHz and 453.7 MHz for the 46—
48 and 46-50 isotope pairs, respectively, and independent of
transition energy. Our calculated values of NMS are shown in
table 1.

Due to these considerations we have used the reported
values of the measured isotope shift for the 3d%4s 4F9/2—
3d*4p*F§, transition, and for the 3d*4s *Fo/,—3d*4p*G{,
transition we use our own rough reading from the data with
large errors.

In table 1 we extract ksps from the experimental values
of the isotope shift. We remove the NMS and field-shift (FS)
components (the field shift is calculated in section 4.1) and
then remove the mass-dependence from the residual SMS. We
conclude from table 1 that for consistency with experiment
one requires values of the specific-mass-shift constant of
ksms —267(18) GHz amu and —269(98) GHz amu
for the 3d*4s *Fy,—3d*4p *F§ , and 3d*4s *Fy»-3d*4p*GY, ,
transitions, respectively.

4.1. Field shift

The field-shift component of the isotope shift is given by
vt = Fs(rhyM A = F((r}) — (1))

where (r2) is the square-mean charge radius. We have used
the rms charge radii for Ti II isotopes tabulated in [27],
which result in § (r2)*40 = —0.104(45) fm? and 8 (r2)7040 =
—0.251(45) fm?.

We have developed two methods of calculating the field-
shift constant, F. The first is to simply vary the nuclear
radius in the code (in AMBIT the nuclear charge has a Fermi
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Table 2. Frequencies and kgys of Ti II levels relative to the ground state (3d*4s *F3 ,2). Note that for this calculation we do not include
modification of the energy denominator; i.e. § = 0. The last two lines show transitions where comparison with experiment is possible.

Level CI »® =@ =® Total Experiment
o (cm™)

3d%4s4Fy s 331 -6 140 —4 461 393.44
3d%4p 4G8/2 28418 1151 869 273 30711 29968.30
3d%4p 4G‘])1/2 28 668 1170 909 258 31005 30240.88
3d%4p 4Fg/2 29749 1226 902 188 32065 31301.01

kSMS (GHZ amu)

3d%4s 4F9/2 474 —12.2 1.0 —1.5 34.7

3d%4p 4G§/2 —182.7 —2852 115.6 —229 -=375.1

3%4piGY,, —161.4 2902 1184  —269 —360.2

3d24p4F8/2 —61.8 —141.5 —1319 —10.7 -—3458

Fopt G, s 3949 —269 (98)
l:‘9/2_ Fg/z —380.5 —267 (18)

Table 3. Frequencies and ksys of Ti 11 levels relative to the ground state (3d?4s *F;»), including in & our modification of the energy
denominator of equation (6): § = E¢/ — EPF. The last two lines show transitions where comparison with experiment is possible.

Level CI »® @ 3O Total Experiment
o (cm™")

3d%4s*Fy ), 331 -7 109 -3 430 393.44

3d%4p 4G8/2 28418 837 677 166 30099 29968.30

3d%4p 4G’|’]/2 28668 850 709 159 30386 30240.88

3d%4p 4F‘9’/2 29749 969 625 109 31451 31301.01
kSMS (GHZ amu)

3d%4s 4F9/2 474 —-9.8 1.3 —1.1 37.8

3d4p*Gy,  —1827 —185.1 885 —16.1 —295.4

3d%4p 4G{1)1/2 —1614 —189.3 905 —184 -—-278.6

3d%4p 4F3/2 —61.8 —140.0 —29.3 -84 —239.5

FypGY, 3164 —269 (98)

Fop—*F, 2773 —267(18)

distribution) and calculate energy at each point. The field-shift
constant is then extracted as

_ dw
Ay’

The second method is a scaling method where we take
the difference in the potentials from two different nuclear
charge radii and rescale it to increase the size of the effect:
SU(r) = MUY (r) — UA(r)), where UA(r) is the nuclear
potential of isotope A. We add §U (r) to the original nuclear
potential, perform the energy calculation and extract F as

1 dw
S(r2)AA dx’

This method was used in [14] for single-valence-electron
ions.

In practice, we have found that both methods give
equivalent results within a few per cent. Similarly, the
choice of basis sets makes little difference (our basis sets
are discussed in the following section); any error in the FS
constant is swamped by the experimental error in § (r2). We use
F ~ —410 MHz fm~2 for both the 3d*4s 4F9/2—3d24p 4Fg/2
and 3d*4s *Fy/»—3d*4p*GY, , transitions. The spread of our
results is less than 10 MHz fm™2.

5. Calculation and results

The ground state of Ti II has a 1s22s22p®3s23p©3d?4s
configuration, and we are interested in transitions to
3d%4p levels. A reasonable single-particle basis can be
obtained by solving the self-consistent Dirac—Fock equations
for the 1s22s22p%3s?3p®3d® electrons (i.e. in the VVN~!
approximation) and generating other valence and virtual levels
in the potential of these electrons.

Valence—valence correlations are included to all orders by
the CI method. The 1s*2s22p®3s23p® electrons are treated
as a frozen core, and we include all single and double
promotions from the leading configurations 3d*4 and 3d?4p in
our calculation. Correlations with the frozen core (including
the relatively important 3s and 3p orbitals) are treated using
many-body perturbation theory, as explained in section 3. Note
that because the Dirac—Fock equations were not solved on the
frozen core alone, the ‘subtraction diagrams’ outlined in [16]
must be included. There are two relevant basis sets: the MBPT
basis that includes a very large number of virtual levels and a
more restricted CI basis that is a subset of the MBPT basis.

Our calculations are performed with a relativistic single-
electron basis set made from B-splines, similar to those
developed by Johnson et al [28]. This type of basis was
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Table 4. Frequencies and total isotope shifts of Ti II transitions to the ground state (3d*4s *F;,). Isotope shifts are relative to “Ti.

® (cm™1) Spl6.48 Sp30.48
Transition AA)  Experiment Theory (MHz) (kms™!) (MHz) (km s™!)
3d%4p 4Gg/2 3385 29544 29636 —784 (79) 0.265 (27) 742 (73) —0.251 (25)
3d%4p 4F§’/2 3243 30837 30937 —756 (98) 0.245 (32) 717 (90) —0.232 (29)
3d24p 4Fg/2 3230 30959 31075 —742 (95) 0.240 (31) 704 (88) —0.228 (28)
3dz4p4D‘f/2 3074 32532 32732 —744 (107)  0.229 (33) 706 (99) —0.217 (30)
3d24p4D’3}/2 3067 32603 32821 =743 (113) 0.228 (35) 705 (104) —0.216 (32)

shown to be effective in calculating transition frequencies and
specific mass shifts in Mg I and carbon ions [15, 16].

We have included in the CI all single-particle levels up to
16spdf (that is, outside the frozen core we have 3s—16s, 3p—
16p, 3d-16d and 4f-16f). This basis is large enough to
effectively saturate the CI. For the sums over virtual levels in
the MBPT diagrams we are able to include a much larger basis;
we have used 33spdfg. The results are presented in table 2,
where we have separated the effects of the pure CI calculation
from the effects of the MBPT operator. Note that the effective
three-valence-electron part of the MBPT operator, £, has
a non-negligible impact on the final results. This should be
contrasted to other atoms (e.g. T1[23], C [16]) where they were
omitted. In our case this is not possible because of the large
overlap between the 3s and 3p core orbitals and the 3d valence
orbitals. Table 3 presents a second set of results that include
the modified energy denominator as discussed in section 3.2.
As one might expect, the size of the MBPT contribution
has been reduced because the energy denominators are now
generally larger in magnitude. Nonetheless it is clear that the
modification of energy denominators is a higher-order effect
than the inclusion of X itself.

In table 4 we present our calculations of isotope shift in
the astronomically relevant transitions of Ti II, i.e. those seen
in QSO spectra. The transition frequencies and SMS were
calculated in the same manner as the transitions in table 3 with
8§ = EC! — EPF_ The difference between these results and the
6 = 0 results was used to estimate accuracy. Field shift was
calculated using the method of section 4.1. The results are
presented both in MHz and km s~!: the latter is the preferred
form for use in astronomy (§v = §A/A x c kms™1).

6. Conclusion

In this paper we have calculated isotope shifts for Ti II as a
test case for 3d-transition metals because it has experimental
data available for comparison. Our CI calculations for Ti II
designate 3d as a valence orbital while keeping the 3s and 3p
orbitals in the frozen core. This provides a great saving for
the size of the CI calculation, but the 3s and 3p correlations
are large, and must be included using MBPT in order to obtain
good accuracy for the specific-mass shift. In this case we have
shown that = is important; we would expect it to be for all
3d-transition metals.

We have also presented a modification of the MBPT
energy denominator which consists of adding a constant,
8 = E€! — EPF o the denominator. Here E€! and EPF

are calculated for the ground state. This improves both
the calculated frequencies and specific-mass-shift constants
significantly. We have performed isotope-shift calculations
for astronomically important transitions that are seen in quasar
absorption spectra. Taken together with existing accurate
laboratory wavelengths and relativistic-shift calculations,
Ti IT may be a useful probe of a-variation.

Using the techniques presented in this paper we can
perform accurate calculations of isotope shifts for other atoms
of astronomical interest, including the 3d-transition metals
Fe II, Cr I, Ni IT and Mn II. These systems are very important
in quasar absorption studies of «-variation, yet their isotope
shifts have not been measured. Furthermore, by comparing
results of different methods, in particular the § = 0 and
§ = E¢! — EPF results, we can estimate the accuracy of
our theoretical predictions.
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