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INTRODUCTION

Atoms and ions with several valence electrons and
an unfilled 

 

d

 

 shell are of great interest for atomic phys-
ics as well as other fields of physics (astrophysics and
reactor physics) [1–3]. 

In this paper, the energy of electron affinity is calcu-
lated for a zirconium atom. To do this, energies of the
ground states of a neutral atom and its negative ion
should be calculated. The ground configuration of Zr
and Zr
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respectively [2].

The method of superposition of configurations (SC)
is one of the most popular methods for calculating com-
plicated polyvalent atoms. This method, which was
repeatedly used by our group for the calculation of
energy levels and various observables in heavy atoms
[4–6], is applicable to Zr atoms as well. All electrons
are separated into two parts. [
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] electrons are
related to the core, and 
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d

 

 and 
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 electrons are left in
the valence domain. Because the number of valence
electrons is large (four for a neutral atom and five for a
negative ion), the dimensions of the configuration
space turn out to be so great that diagonalization of the
Hamilton matrix becomes impossible. For this reason,
Schrödinger’s matrix equation is solved in a certain
subspace with the calculation of the second-order cor-
rection by the method of the determinant perturbation
theory (PT).

The first part of this paper is devoted to the general
formalism of the method proposed (the SC method in
combination with the determinant PT). In the second
part of the work, results of the calculation of ground
state energies for Zr and Zr

 

–

 

 are discussed and 

 

g

 

-factors
are calculated for these states.

GENERAL FORMALISM

As mentioned above, the calculation of the energy
of electron affinity for a Zr atom by the SC method

requires the knowledge of the ground state energies of
a neutral atom and its negative ion. As usual, this
requires the solution of a many-particle Schrödinger’s
equation
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where 
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 is the energy of the 

 

n

 

th level and 

 

Ψ

 

n

 

 is the cor-
responding wave function, which is sought in the form
of a linear combination of Slater determinants
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Here, 

 

N

 

 is the dimensionality of the configuration space
and 

 

det

 

i

 

 are determinants constructed from basis orbit-
als. The latter were found in the following way. Har-
tree–Fock–Dirac (HFD) equations were solved for the
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 configuration of neutral zirconium
and for the 
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 configuration of a negative
zirconium ion. Further, in the calculation of Zr, the
[
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] orbitals were frozen and the orbital 
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p

 

 was
obtained from the solution of the HFD equation for the
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 configuration.
The remaining orbitals were constructed virtually.

The method for constructing virtual orbitals is
described in detail in [5]. As a result, the complete basis
set includes the orbitals 
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, where the numbers indicate the principal quan-
tum numbers.

For Zr
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, we have the following Hartree–Fock orbit-
als: 4
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 and 5

 

s
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 for
the 4
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 configuration. The remaining orbitals are
virtual. The complete basis set includes the orbitals
1
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, and 5–16
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. Now substitut-

ing (2) into (1) and varying over the coefficients ,
we obtain
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—Energies and 
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-factors of the ground states of a zirconium atom and its negative ion and energy of
electron affinity to a neutral atom are calculated. The method used represents a combination of the superposition
of configurations and the determinant perturbation theory. A satisfactory agreement is obtained between the cal-
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or in the matrix form

 

(3)

 

where 

 

H

 

 is the energy matrix and 

 

Φ

 

n

 

 = ( , , …,

) 

 

is the desired wave function written in the basis of
determinants. 

If a complete superposition of configurations is car-
ried out by using all the basis functions, the dimension-
ality of the configuration space will be 

 

~4 

 

× 

 

10

 

9

 

 for Zr
and 

 

~5 × 1011 for Zr–. The solution of matrix equation
(3) of this dimensionality considerably exceeds modern
computational resources. In this connection, the most
important configurations should be selected. The num-
ber of determinants taken into account in these config-
urations is ~4 × 106. Because it is rather difficult to
solve equation (3) of even this dimensionality, the con-
figuration space of N determinants was divided in two
parts: N = N0 + N1. For the first part of the configuration
space of dimensionality (N0 × N0), the problem was
solved by the SC method and the second part was taken
into account within the framework of the determinant
PT. Note that the choice of N0 is arbitrary to a certain
extent and is determined so that, first, the possibility of
using the SC method to find first solutions of
Schrödinger’s equation for this part of the configuration
space is retained and, second, the correction of the
determinant PT is as small as possible. 

Within the framework of this approach, we repre-
sent the matrix H in the form

where the matrix H0 in turn is conveniently represented as

(4)

Here,  is the left upper block of the matrix H of
dimensionality N0 × N0 and D is the diagonal of the
block of dimensionality N1 × N1 of the matrix H with
elements ( , …, HNN).

It is clear that, if N0 is taken large enough and the
configurations in (2) are ordered so that those produc-
ing the greatest contribution fall within , then 
prevails over H1. This allows H1 to be taken into
account within the framework of the perturbation the-
ory. The matrix  will be called the initial approxima-
tion for the determinant PT.

At the first stage, we solve the matrix equation

(5)

Here,  = ( , , …, ), 0, …, 0) for n ≤ N0 and

 = (0, …, 0, 1, 0, …, 0) for n > N0. The unit occupies
the nth position. The choice of configurations for the
initial approximation is discussed in detail in the next
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section. Solving Eq. (5), we find the energies and the
wave functions. All configurations are rearranged in
accordance with their weight contribution to the wave
functions in decreasing order. The weight of configura-
tions is determined by the expression

Here, Nk is the number of determinants in the kth con-

figuration and  are the corresponding coefficients.
Configurations with weights lower than a certain
threshold value (~10–5–10–6) are rejected. Instead of
rejected configurations, other ones are added and
Eq. (5) is solved, again producing new eigenvectors
and energy eigenvalues. Repeating this procedure sev-
eral times, we finally obtain the matrix of the initial
approximation  and the corresponding wave func-
tions , which take into account configurations pro-
ducing the greatest contribution. All the rejected con-
figurations are then taken into account by using the
determinant PT.

As we are interested only in the energy of the
ground state (i.e., the first eigenvalue of the equation),
there is no need to using the direct diagonalization
method. To find a few first eigenvalues and eigenvec-
tors, we use the Davidson method (see, for example,
[7]). Eigenvalues of a matrix of a dimensionality of
~2 × 105 are found within the framework of this
method.

At the second stage, the contribution of H1 is taken
into account. It is easy to see that the first-order correc-
tion to the unperturbed energy E0 is

and the second-order correction can be calculated from
the formula

(6)

where  is the kth element of the diagonal D [see for-
mula (4)]. It is seen from (6) that there is no need to
construct a complete matrix H of dimensionality N. It
will suffice to construct the initial approximation
matrix  of dimensionality N0, diagonal elements of
the block of dimensionality N1, and two symmetric
rectangular blocks of dimensionality N1 × N0 of the
matrix H.

This method has the following advantages. First, if
N � N0, the block of dimensionality N1 × N0 to be con-
structed will be much smaller than the block of dimen-
sionality N1 × N1. Second, by virtue of additivity, the
sum in (6) can be divided into a series of subsums; i.e.,
with knowledge of the initial approximation (the unper-
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turbed energy ), all second-order corrections can be
taken into account in parts.

RESULTS AND DISCUSSION

The energy of electron affinity EA to a zirconium
atom can be defined as

where ∆Ecore and ∆Eval are the differences between the
corresponding core and total valence energies of the
ground states of Zr– and Zr. By virtue of the fact that the
bases for a neutral atom and its negative ion were con-
structed in different ways, the absolute values of core
energies for them are different:

(7)

Note that the core–valence correlations are not
taken into account here. At present, methods for accu-
rate calculation of correlations of this type in atoms
with 4–5 valence electrons are unavailable. Therefore,
we could only estimate the corresponding contribution
to the affinity energy, which is ~0.005 au. Thus, the
problem is to take into account most completely the
interaction of valence electrons and to calculate ∆Eval.

Once the matrix  is constructed and the wave
function Φ0 is found, formula (6) of the determinant PT
is used in further calculations. In this connection, its
accuracy should be estimated. This is carried out as fol-
lows.

Two calculations of valence energies of the ground
states Ev were made for both Zr and Zr– by the SC
method on sets of configurations S1 and S2, where S1 ⊂

Ei
0

EA ∆Ecore ∆Eval,+=

Ecore Zr( ) 3594.3696 au,=

Ecore Zr–( ) 3594.3488 au,=

∆Ecore 0.0208 au.–=

H0'

S2. Then for the second set we carried out a calculation
by the determinant PT method with the initial approxi-
mation corresponding to the set S1. This allowed us to
determine the error of the PT for the set S2 (see Tables 1
and 2).

The first basis set S1 for Zr included one-, two-, and
three-particle excitations from the ground state
Zr(4d25s2) to the shells 5–8s, 5–7p, 4–7d, 4–7f, and
5−7g and one- and two-particle excitations to the shells
5–9s, 5–9p, 4–9d, 4–9f, and 5–9g. Configurations with
weights lower than 10–5 were rejected. In the construc-
tion of S2, it is very important that configurations from
the first set S1 be completely entered into S2. Therefore,
the second set S2 was constructed merely of S1 by one-
particle excitations to the shells 5–9s, 5–9p, 4–9d, 4–9f,
and 5–9g. Then configurations with weights lower than
10–6 were rejected. It is seen from Table 1 that the error
of the PT method is about 15%.

The first set S1 for Zr– included one-, two-, and
three-particle excitations from the ground state to the
shells 5–8s, 5–6p, 4–6d, 4–5f, and 5g and one- and two-
particle excitations to the shells 5–10s, 5–10p, 4–10d,
4−10f, and 5–7g. The second set S2 was constructed of
S1 by one-particle excitations to the shells 5–12s,
5−12p, 4–12d, 4–14f, and 5–8g. Configurations with
weights lower than 10–5 were rejected in both sets. It is
seen from Table 2 that the error of the PT method is
about 17%.

One can see that the accuracy of the PT is somewhat
worse in the case of an ion, which corresponds to a
greater absolute value of the correction. In the final cal-
culation presented below, PT corrections are still
greater. Therefore, we estimate the accuracy of the PT
as 40%.

The valence energy of the first set S1, i.e.,  =
Ev(S1), was taken as the initial approximation for the

Ev
0

Table 1.  Valence energy of the ground state 3F2(4d25s2) for Zr

Method Nc N0 Ev , au δ, au

SC(S1) 2646 92207 2.808875

SC(S2) 3903 135652 2.809172 0.000297

SC(S1) + PT(S2 – S1) 3903 135652 2.809216 0.000341

Note to Tables 1 and 2: Nc and N0 are the numbers of configurations and determinants, respectively, taken into account; Ev is the valence
energy of the ground state; and δ is the correction to Ev(S1).

Table 2.  Valence energy of the ground state 4F3/2(4d35s2) for Zr–

Method Nc N0 Ev, au δ, au

SC(S1) 2227 162447 2.835419

SC(S2) 2810 209396 2.837245 0.001826

SC(S1) + PT(S2 – S1) 2810 209396 2.837552 0.002133
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final calculation for both Zr and Zr–. As noted above, by
using the additivity property, we divide the total set of
configurations in a series of subsets, where the latter are
added each time to the initial approximation selected.
Each next subset of configurations corresponds to exci-
tations to higher shells and does not include the preced-
ing ones.

Contributions of subsets to PT corrections to ener-
gies for Zr and Zr– are presented in Tables 3 and 4,
respectively.

Thus, a total of 42175 configurations (see Table 3)
obtained by exciting electrons from the ground state to
shells up to 15spdfg was taken into account for Zr. All
one- and two-particle excitations were taken into

account as were the most important three- and four-par-
ticle excitations. The total PT correction to the valence
energy of the ground state Ev(Zr) is 0.00163 au.

A total of 79955 configurations and excitations to
the shells up to 15spd, 16fg were taken into account in
the framework of PT for Zr– (Table 4). Complete allow-
ance was made for single and double excitations from
the ground state to these shells and partial allowance
was made for triple, fourfold, and fivefold excitations.
The total PT correction to the valence energy Ev(Zr–) is
0.00868 au.

PT correction relative to the initial approximation
Ev(S1) can be refined somewhat for Zr and Zr– by
including results from Tables 1 and 2. The total PT cor-
rection can be decreased by the difference δ(SC(S1) +
PT(S2 – S1)) – δ(SC(S2)) (see Tables 1 and 2). Thus, we
have

δpt(Zr) = 0.00159,

δpt(Zr–) = 0.00837.

The total valence energy consists of the sum of the
valence energy of the initial approximation and the
total PT correction

(8)

Let us add and subtract Ev(S2). Then formula (8) can be
written in the form

(9)

We denote the second term in (9) as 

(10)

Then ∆Eval can be represented as 

(11)

Taking into account the variation of the core energy
(7), formulas (9)–(11), and data from Tables 1 and 2,
we finally find for the affinity energy EA

(12)

As seen from (12), all the three terms are very
important and none of them can be neglected. We esti-
mate the error in our calculation of the valence energy
at a level of 0.002 au and assign it to incompleteness of
the configuration space and inaccuracy of the second-
order correction taken into account within the frame-
work of the PT. Another theoretical uncertainty noted
above is associated with core–valence correlations.
Within the limits of this uncertainty, our result agrees
with an experimental value of 0.0157 ± 0.0005 au =
0.427 ± 0.014 eV [2].

Eval Ev S1( ) δpt.+=
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δpt

�

δpt δpt Ev S2( )– Ev S1( ).+=
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∆Eval ∆Ev S2( ) ∆δpt.+=
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EA ∆Ecore ∆Ev S2( ) ∆δpt+ +=

=  0.0208– 0.0281 0.0053+ + 0.0126 au.=

�

Table 3.  PT corrections for various configuration sets for Zr

(3F2 level) (Nc =  + , where  = 2646)

Shells m δpt , au

9spdfg 1–4 29827 0.000743

10spdfg 1, 2 1443 0.000183

11spdfg 1, 2 1689 0.000195

12spdfg 1, 2 1935 0.000179

13spdfg 1, 2 2181 0.000150

14spdfg 1, 2 2427 0.000109

15spdfg 1, 2 2673 0.000071

Total 1–4 42175 0.001630

Note to Tables 3 and 4:  Nc is the total number of configurations, δpt
is the PT correction, and m is the multiplic-
ity of excitations from the ground state to
the shells.

Nc
0

Nc
1

Nc
0

Nc
1

Table 4.  PT corrections for various configuration sets for

Zr– (4F3/2 level) (Nc =  + , where  = 2227)

Shells m δpt , au

12spd, 14 f, 8g 1–4 61435 0.006284

13spd, 9, 10g 1, 2 3000 0.000642

11, 12g 1, 2 1506 0.000455

13, 14g 1, 2 1650 0.000246

15, 16g 1, 2 2010 0.000111

14spd, 15f 1, 2 2754 0.000135

15spd, 16 f 1, 2 3195 0.000088

8sp, 7df, 8g 5 1405 0.000075

Total 1–5 79955 0.008678

Nc
0

Nc
1

Nc
0

Nc
1
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We also calculated g-factors of the ground states of
Zr and Zr–:

g(Zr) = 0.670,

g(Zr–) = 0.402.

Knowing that the ground states of Zr and Zr– are
determined by the terms 3F2 and 4F3/2, respectively, their
g-factors can be calculated by using general rules of
LS-coupling. These values turn out to be in very good
agreement with the numerical calculation and with the
experimental value for zirconium g(Zr) = 0.66 [8].
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