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In this work, high-precision calculations of the
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1 amplitudes were carried
out for magnesium, calcium, and strontium (

 

n

 

 = 3, 4,
and 5, respectively). The computations were motivated
by the following reasons. First, in recent years a consid-
erable success has been achieved in the development of
magneto-optic traps. Atomic capture followed by atom
cooling makes it possible to study the atomic interac-
tions at ultralow temperatures. Most experiments were
carried out with alkali atoms, for which it is possible to
achieve high densities and low temperatures and
observe Bose–Einstein condensate. However, the inter-
pretation of the experimental data for these systems is
quite complicated and ambiguous, in particular,
because of the presence of ground-state hyperfine
structure in alkali atoms. For example, the authors of
recent works [1, 2] draw antithetical conclusions about
the possibility of obtaining Bose–Einstein condensate
for cesium.

An attractive feature of the bivalent atoms is that
they have several isotopes with zero nuclear spin. The
absence of the hyperfine structure in these atoms facil-
itates both experimental and theoretical study of atomic
interactions. Since the cold traps were already obtained
for magnesium, calcium, and strontium, the new possi-
bilities of studying their interatomic interactions and the
prospects for achieving Bose–Einstein condensate of
these atoms have been actively discussed, e.g., in [3–5].

The dispersion (van der Waals) coefficient 

 

C

 

6

 

 is one
of the main parameters characterizing the dipole–
dipole interaction of atoms in a cold trap. This coeffi-
cient is necessary for evaluating the atomic scattering
lengths, which determine the dynamics and stability of
the Bose–Einstein condensate. To calculate the 

 

C

 

6

 

 coef-
ficient, one should know the matrix elements for the 

 

E

 

1
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transitions from the low-lying odd-parity states to the
ground state (see, e.g., [6, 7]). It is worth noting that the
expression for 

 

C

 

6

 

 contains the fourth power of matrix

elements 
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 and, considering the resonant

character of the   
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 transition (the contribution
of the corresponding 

 

E

 

1 amplitude to 

 

C

 

6

 

 ~ 90% [8]), it
becomes clear that the 

 

E

 

1 amplitude of this transition
should be determined with the highest possible accu-
racy.

Another motive is as follows. Despite the fact that

the oscillator strengths and lifetimes of the  and 
states were repeatedly determined both theoretically
and experimentally [4, 9–12], the results for all three
atoms are quite contradictory. In particular, the discrep-
ancies between the data of different experimental
groups are as great as 70%. Therefore, high-precision
calculations of the above-mentioned 

 

E

 

1 amplitudes
appear to be well-timed and topical.

We used a method combining the configuration
interaction (CI) and the many-body perturbation theory
(MPT). This method was developed by our group over
several recent years and successfully applied to the
energies of low-lying levels and various observables in
some atoms [13]. Since the method is described in
detail in the cited papers, we only outline its basic posi-
tions. The MPT is used to construct effective operators
(Hamiltonian, electric dipole moment operator, etc.)
for valence electrons. In doing so, the interaction
between valence and core electrons is taken into
account. Next, if the number of valence electrons is two
or more, the CI is used to account for the interaction
between them. This approach describes both the inter-
action between valence electrons and the valence–core
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1 amplitudes were carried out for magnesium,
calcium, and strontium (

 

n

 

 = 3, 4, and 5, respectively). The following results are obtained for the reduced matrix

element 
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 of electric dipole moment operator: 4.03(2) au for Mg, 4.91(7) au for Ca, and 5.28(9)
au for Sr. These matrix elements are necessary for calculating the van der Waals coefficients 

 

C

 

6

 

, which are used
in the evaluation of the atomic scattering lengths. The latter determine the dynamics and stability of Bose–Ein-
stein condensate. 
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correlations and, thereby, improves the accuracy of cal-
culating level energies and various observables by an
order of magnitude, as compared to the pure CI
method. It should be noted that this method is particu-
larly efficient in the high-precision calculations of biva-
lent atoms. First, the presence of only two valence elec-
trons allows one to apply full CI. In this case, the num-
ber of basis functions is taken to be so large that the
error introduced by the incomplete basis set is negligi-
ble. Therefore, the problem of unsaturated CI (typical
of the systems with many valence electrons) does not
arise. Second, due to the compact core, the perturbation
series converges better than for the alkali atoms.
Because of this, even the second-order MPT provides a
good accuracy for both energies and 

 

E

 

1 amplitudes.
The aforesaid indicates that the combination of CI

and MPT (CI+MPT) is highly appropriate for our cal-
culations. We omit the detailed description of the com-
putational procedure (it will be given elsewhere) and
pass on to the numerical results for the reduced matrix

elements 
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〉

 

 for Mg, Ca, and Sr. For com-
parison, we present the results obtained for all three
atoms by two methods, pure CI and CI+MPT. In the lat-
ter case, we took into complete account the second
order and partially included the higher-order MPT cor-
rections. As regards these latter, the following should
be pointed out. Specific to the MPT for the atoms with
several valence electrons, both one- and two- electron
diagrams need to be calculated at the step of obtaining
the second-order corrections to the Hamiltonian. There
are great many of such diagrams (>10

 

7

 

), whose evalua-
tion is a rather time-consuming procedure even for
modern supercomputers. Fortunately, there is no need
to calculate all the diagrams and one usually restricts
oneself to the evaluation of several hundred of thou-
sands of diagrams practically without any loss in accu-
racy. However, it is clear that an attempt at taking
account of all the third-order diagrams will face
immense technical obstacles and is hardly feasible in
practice.

In this connection, a variant with partial inclusion of
high- order diagrams in an indirect way seems to be
more reasonable. One such method is used in this
paper. This method was proposed in [14], where, in par-
ticular, it was demonstrated that the agreement between
the calculated and experimental spectra of many-elec-
tron atoms can be substantially improved by choosing
an optimal one-electron Hamiltonian. Below, the opti-
mized effective Hamiltonian is used for calculating the
atomic observables. When constructing the effective
electric dipole moment operator and at the step of 

 

E

 

1
amplitude calculations, the RPA equations were solved
and one- and two-particle corrections to the RPA were
evaluated (including corrections for the normalization
of wave functions and for the structure emission). This
procedure is described in detail in [15]. Note that, when
solving the RPA equations, we effectively sum a certain
subsequence of all-order MPT diagrams. The RPA
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equations were solved at frequency 
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)
for all three atoms. Both length (

 

L

 

) and velocity (

 

V

 

)
gauges were used in the calculations. This allowed the
control of computational accuracy and was helpful in
the estimation of theoretical error. The results are pre-
sented in the table.

One can see that the difference between the 

 

L

 

- and

 

V

 

-gauge results for the 

 

E
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 transi-
tion is 0.3% for Mg, 0.5% for Ca, and 0.8% for Sr. For

the   
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 transition, the corresponding 

 

E

 

1 ampli-
tudes are small. This transition is accompanied by a
change in the total spin 

 

S

 

 and, hence, its amplitude is
suppressed. Mathematically, this is a result of multiple
mutual cancellations of the major contributions that
come from the one-electron matrix elements

 

〈

 

np

 

1/2

 

||

 

d

 

||

 

ns

 

〉

 

 and 
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 (

 

n

 

 = 3, 4, and 5 for Mg,
Ca, and Sr, respectively). This, naturally, impairs the
computational accuracy. Nevertheless, the correspond-
ing 

 

L

 

- and 

 

V

 

-gauge results coincide at a 6% level and
are quite satisfactory. The 

 

V

 

-gauge matrix element of
electric dipole moment operator is written as (atomic
units 

 

"

 

 = 

 

e

 

 = 

 

m

 

 = 1 are used)

Here, 

 

c

 

 is the speed of light, 

 

E

 

i

 

 and 

 

E

 

f

 

 are the energies
of the initial and final states, respectively, and 

 

α

 

 are the
Dirac matrices. Hence, a good result for the 

 

V

 

 gauge
can be obtained if not only the matrix elements of
dipole moment operator but also the transition energies

are properly calculated. For all three atoms, the ,

, and 

 

1

 

S

 

0

 

 energies were reproduced with a very high
accuracy (

 

≤

 

0.1%).

It is worth noting that, for all six transitions (see
table), the 

 

V

 

-gauge values obtained at the CI step are
closer to the final results than the corresponding

 

L

 

-gauge values. Unfortunately, this fact does not imply
that the 

 

V

 

 gauge is more trustworthy in this case.
Although the contribution of MPT to the final result is
lesser for the velocity gauge, this is so because of mul-
tiple cancellations of various perturbative corrections,
each being several times larger in magnitude than for
the length gauge. As a result, the 

 

V

 

 gauge is much more
sensitive to the high-order MPT corrections than the

 

L

 

 gauge is. For this reason, the length-gauge values are
taken as the final results of our calculations.

Note that the major error in the results is caused by
the fact that all-order MPT cannot be realized. As was
mentioned above, the CI is saturated and does not intro-
duce any additional errors. Therefore, the smaller the
MPT corrections the smaller the resultant error. In addi-
tion, the computational error was estimated with allow-
ance made for the proximity of the 

 

L

 

- and 

 

V

 

-gauge
results. The MPT yields the following corrections to the
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L

 

-gauge   
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E

 

1 amplitudes: 1.6% for Mg,
5.5% for Ca, and 6.4% for Sr (table).

Our final 

 

|〈 ||

 

d

 

||

 

1

 

S

 

0

 

〉|

 

 values, which can be used
for the subsequent calculations (e.g., of the 

 

C

 

6

 

 coeffi-
cients), are as follows: 4.03(2) for Mg, 4.91(7) for Ca,
and 5.28(9) for Sr. Note that the 

 

P
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1

 

S

 

0

 

 transition
probability in Ca was recently experimentally found to
be 2.205(8) × 108 s–1 [4]. Being recalculated to the cor-
responding transition amplitude, this gives 4.967(9) au.
The experimental accuracy of 0.2% is unprecedented
for the E1 amplitude and far exceeds the accuracy of
our calculation. At the same time, this enables us to
check the reliability of the estimated computational
accuracy. As for Mg and Sr, the accuracy of our results
is higher than the experimental accuracy for the former
and is at a level of the best experimental results for the
latter.

The MPT contributions to the 3P1  1S0 transi-
tions are considerably greater for the L gauge, which
we believe to be more reliable than the V gauge. In
addition, due to multiple cancellations (reaching 99%,
e.g., for magnesium) of the major contributions, the
role of high-order corrections is much greater for these
transitions. In particular, it was demonstrated in [16]
that the inclusion of Breit interaction reduces by ~5%
the 3P1  1S0 transition amplitude for magnesium.
For this reason, we estimate the computational error for
this E1 amplitude at a level of 10–12% for all three
atoms.
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In conclusion, note once more that we have calcu-

lated the 〈 ||d ||1S0〉 and 〈 ||d ||1S0〉 matrix elements
with emphasis on high-precision calculations of the
singlet–singlet transitions. As expected, the best accu-
racy is obtained for Mg (0.5%) and it equals 1.4% for
Ca and 1.7% for Sr. The accuracy obtained for magne-
sium is the best in the world and the results for calcium
and strontium are the best among the theoretical works.
As pointed out above, the major error in our calcula-
tions is due to the incomplete inclusion of high-order
MPT terms. Since the second-order MPT is usually
overstate the correlation corrections to various observ-
ables, we assume that our results are slightly lower than
the true value for the singlet–singlet amplitudes and
higher than the singlet–triplet ones. This agrees well
with the experimental data on the singlet–singlet ampli-
tudes. One can see in the table that the amplitudes cal-
culated for all three atoms proved to be less than the
experimental values. Subsequently, we intend to use the
results of this work for calculating the C6 coefficients
for magnesium, calcium, and strontium.

We are grateful to A. Derevyanko for drawing our
attention to the problem and for useful remarks. This
work was supported in part by the Russian Foundation
for Basic Research, project no. 98-02-17663.
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