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a dependence of transition frequencies for ions SiII , Cr II , FeII , Ni II , and Zn II

V. A. Dzuba,1 V. V. Flambaum,1 M. G. Kozlov,2,* and M. Marchenko1
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We perform an improved calculation of thea dependence (a5e2/hc) of the transition frequencies for ions,
which are used in a search for the variation of the fine-structure constanta in space-time. We use the
Dirac-Hartree-Fock method as a zero approximation and then the many-body perturbation theory and
configuration-interaction methods to improve the results. The important problem of level pseudocrossing~as a
function of a) is considered. Near the crossing point the derivative of the frequency overa varies strongly
~including a change of sign!. This makes it very sensitive to the position of the crossing point. We propose a
semiempirical solution of the problem, which allows us to obtain accurate results.
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I. INTRODUCTION

Recently there was an intensive discussion of the poss
space-time variation of the fine-structure constanta5e2/hc
at the cosmological scale. The first evidence of such va
tion was reported in@1–6# from analysis of astrophysica
data. These results are to be compared with the numbe
experimental upper bounds on this variation obtained fr
other astrophysical observations~see, e.g.,@7–9#! and from
precision laboratory measurements@10–12#. Recently, a
number of other laboratory tests have been proposed~see,
e.g.,@13#!. The analysis of the microwave background rad
tion can also give some restrictions on the time variation
a as suggested in@14–16#. Implementations of the space
time variation of the fine-structure constant in the theory
fundamental interactions are discussed, e.g., in Refs.@17–23#
~see also the discussion and references in@3#!.

The most straightforward way to look for the variation
a is to measure the ratio of some fine-structure interval to
optical transition frequency, such asv(np1/2→np3/2) and
v(n8s1/2→np3/2).

1 This ratio can be roughly estimated a
0.2a2Z2, whereZ is the nuclear charge@24#. Therefore, any
difference in this ratio for a laboratory experiment and
measurement for some distant astrophysical object can e
be converted into the space-time variation ofa. However, as
was pointed out in@25#, one can gain about an order o
magnitude in the sensitivity to thea variation by comparing
optical transitions for different atoms. In this case the f
quency of each transition can be expanded in a series ina2:

v i5v i
(0)1v i

(2)a21••• ~1a!

5v i , lab1qix1•••, x[~a/a0!221, ~1b!

wherea0 stands for the laboratory value of the fine-structu
constant. Note that Eq.~1a! corresponds to the expansion

*Electronic address: mgk@MF1309.spb.edu
1In fact, the frequencyv(np1/2→np3/2) is not measured directly

but is found as a difference:v(n8s1/2→np3/2)2v(n8s1/2→np1/2).
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a50, while Eq. ~1b! to the expansion ata5a0. In both
cases parametersv i

(2) and qi appear due to relativistic cor
rections.

For a fine-structure transition the first coefficient on t
right hand side of Eq.~1a! turns out to be zero, while for
optical transitions it does not. Thus, for the case of a fi
structure and an optical transition one can write

v fs

vop
5

v fs
(2)

vop
(0)

a21O~a4!, ~2!

while for two optical transitionsi andk the ratio is

v i

vk
5

v i
(0)

vk
(0)

1S v i
(2)2vk

(2)

vk
(0) D a21O~a4!. ~3!

Quite often the coefficientsv i
(2) for optical transitions are

about an order of magnitude larger than the correspond
coefficients for fine-structure transitionsv fs

(2) ~this is because
the relativistic correction to a ground state electron energ
substantially larger than the spin-orbit splitting in an excit
state@25,26#!. Consequently, the ratio~3! is, in general, more
sensitive to the variation ofa than the ratio~2!. It is also
important that the signs of the coefficientsv i

(2) in Eq. ~3! can
vary. For example, fors-p transitions the relativistic correc
tions are positive while ford-p transitions they are negative
This allows us to suppress possible systematic errors tha
independent of the signs and magnitude of the relativi
corrections@25#. On the other hand, for many cases of inte
est, the underlying atomic theory is much more complica
for Eq. ~3!. In particular, the most difficult case correspon
to transitions to highly excited states of a multielectron ato
where the spectrum is very dense. And this happens to
typical situation for astrophysical spectra, in particular,
large cosmological redshifts. Corresponding atomic calcu
tions have to account very accurately for the electronic c
relations, which may affect such spectra quite dramatica

Earlier calculations of the coefficientsq from Eq. ~1! for
transitions suitable for astronomical and laboratory meas
ments were done in Refs.@25–28#. Here we present im-
proved calculations of the coefficientsq for the transitions,
©2002 The American Physical Society01-1
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which are currently used in the analysis of the astrophys
data. A full list of these transitions was given in@3#. We have
not recalculated here the lightest and simplest atoms Mg
Al, where the previous calculation@25# should be sufficiently
accurate; we focus on more complicated ions SiII , Cr II , FeII ,
Ni II , and ZnII . Our final results for them are given in Tab
I. Note that here we use the single parameterq instead of two
parametersq1 and q2 used in earlier works, andq
[]v/]xux505q112q2.

For comparison, in the last column of Table I we pres
the results of the previous calculations@25,26,28# ~the results
were summarized in Ref.@3#, which also contains som
original calculations!. The improved calculations in th
present work agree with the old results for the majority of
transitions. However, there are several important excepti
The coefficientq for the 62 172 cm21 transition in FeII has
changed its sign. This is because the excited level in
transition was incorrectly identified~in @35# it was errone-
ously assigned to the configuration 3d64p). There are also
significant changes to the NiII transitions. In@28# the accu-
racy in theab initio calculations of the energy levels andg
factors was not high. In the present work we have radica
improved this accuracy. To increase our confidence in
final results, we have performed calculations using two d
ferent computer codes, which give close values forq. There-
fore, we believe that our values are more accurate and
able than the old ones.

Details of the calculations and discussion of the accur
is given below in Sec. III. Before that we briefly address
few theoretical points in Sec. II.

II. THEORY

In order to find the parametersq5]v/]xux50 in Eq. ~1!
we perform atomic calculations for three values ofx: x25

TABLE I. Final results for parametersq from Eq. ~1! for Si II ,
Cr II , FeII , Ni II , and ZnII. Estimated errors are in parentheses. R
sults of the previous calculations@3# are given for comparison.

Ion Transition v0 (cm21) q(cm21)
This work @3#

Si II 2P1/2
o → 2D3/2 55309.337 520 ~30! 530

→ 2S1/2 65500.449 50 ~30! 70
Cr II 6S5/2 → 6P3/2

o 48398.868 21360 ~150! 21290
→ 6P5/2

o 48491.053 21280 ~150! 21200
→ 6P7/2

o 48632.055 21110 ~150! 21060
FeII 6D9/2 → 6D9/2

o 38458.987 1330 ~150! 1450
→ 6D7/2

o 38660.049 1490 ~150! 1620
→ 6F11/2

o 41968.064 1460 ~150! 1640
→ 6F9/2

o 42114.833 1590 ~150! 1780
→ 6P7/2

o 42658.240 1210 ~150! 1420
→ 4F7/2

o 62065.528 1100 ~300! 1210
→ 6P7/2

o 62171.625 21300 ~300! 1280
Ni II 2D5/2 → 2F7/2

o 57080.373 2700 ~250! 2300
→ 2D5/2

o 57420.013 21400 ~250! 2700
→ 2F5/2

o 58493.071 220 ~250! 800
Zn II 2S1/2 → 2P1/2

o 48481.077 1584 ~25! 1577
→ 2P3/2

o 49355.002 2490 ~25! 2479
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21/8, x050, andx151/8. That allows us to determineq:
q54@v(x1)2v(x2)#, and also to estimate the second d
rivative ]2v/]x2ux50. A large value of the latter signals tha
interaction between levels is strong~level pseudocrossing!,
and there is a risk of large errors. For these cases fur
analysis was done as described below.

A. Relativistic calculations of multielectron ions.

In order to accurately account for the dominant relativis
effects we use the Dirac-Hartree-Fock approximation a
starting point for all calculations of atomic spectra. Althou
most of the calculations were done for the Coulomb pot
tial, we have also estimated Breit corrections by includi
the magnetic part of the Breit interaction in the se
consistent field@29#.

The ions we are dealing with in this paper have from o
to nine electrons in the open shells. For one valence elec
in Zn II the Dirac-FockVN21 approximation already gives
rather good results. In the next step the core-valence co
lations can be accounted for by means of many-body per
bation theory~MBPT!. Already the second order MBPT co
rection allows us to reproduce the spectrum with accur
better than 1%, which is more than sufficient for our curre
purposes.

Other ions of interest to us have at least three vale
electrons. Here the dominant correlation correction to tran
tion frequencies corresponds to the valence-valence cor
tions. This type of correlations can be accounted for with
configuration-interaction~CI! method. If necessary, the core
valence correlations can be included within a combined
1MBPT technique@30#. This usually provides an accurac
of the order of 1% or better for the lower part of the spec
of atoms and ions with two or three valence electrons@30–
32#. However, the accuracy ofab initio methods decrease
with increasing number of valence electrons and with ex
tation energy. Indeed, for a large number of valence electr
and/or sufficiently high excitation energy the spectrum b
comes dense, and levels with the same exact quantum n
bers strongly interact with each other. The part of the sp
trum of FeII above 55 000 cm21 and, to a somewhat lesse
extent, the spectrum of NiII represent this situation. Accord
ingly, for these ions we developed a semiempirical fitti
procedure, which is described below.

In order to have additional control of the accuracy of o
CI method we performed calculations for most of the io
with two different computer packages. One package w
used earlier in Refs.@30,32,33# and the other was used i
Refs. @3,25–28,31#. The former package allows one to co
struct flexible basis sets and optimize configuration spa
while the latter allows for a larger CI space as it works w
the block of the Hamiltonian matrix, which corresponds to
particular total angular momentum of an atomJ. When there
were no significant differences between two calculations,
only give results obtained with the first package. Nevert
less, our final results presented in Table I are based on
calculations.

-

1-2



he

lo
th
,

rv

f
th

a

s

e

,

id
s

e

-

el

rbed

n

of

the
the
e

of

e
he
con-

wo

a DEPENDENCE OF TRANSITION FREQUENCIES . . . PHYSICAL REVIEW A 66, 022501 ~2002!
B. Semiempirical treatment of the strong interaction of levels:
Pseudocrossing

In the nonrelativistic limita→0, all multielectron states
are accurately described by theLS-coupling scheme:Ea→0
5Ep,n,L,S,J , wherep561 is the parity andn enumerates
levels with the samep,L,S, and J. For sufficiently small
values ofa the LS coupling holds, and the energy has t
form

Ep,n,L,S,J5Ep,n,L,S
(0) 1S a

a0
D 2S Cp,n,L,S1

1

2
Ap,n,L,S@J~J11!

2L~L11!2S~S11!# D , ~4!

where the first term in the large parentheses gives the s
for the center of the multiplet, and the second term gives
fine structure. With growinga the multiplets start to overlap
and when levels with the samep and J come close,
pseudocrossing takes place.

Near the pseudocrossing the slope of the energy cu
changes dramatically. If this crossing takes place atx'0,
wherex is defined by Eq.~1!, i.e., near the physical value o
a, it can cause significant uncertainty in the values of
parametersq.

Let us first analyze the behavior of the slopesq(x) in the
vicinity of the pseudocrossing in the two-level approxim
tion. Consider two levelsE1 andE2, which cross atx5xc :

E15q1~x2xc!, ~5a!

E25q2~x2xc!. ~5b!

If the interaction matrix element between these two level
V, the exact adiabatic levels will be

Ea,b5 1
2 @~q11q2!~x2xc!6A~q12q2!2~x2xc!

214V2 #.
~6!

It is easy now to calculate the energy derivative with resp
to x in terms of the mixing anglef between unperturbed
states 1 and 2:

]Ea,b

]x
5~cos2f!q1,21~sin2f!q2,1. ~7!

Note that at the crossing the anglef varies from 0 on one
side, throughp/4 in the center, top/2 on the other side
which leads to a change of slopeqa(x)5]Ea /]x from q1
through (q11q2)/2 to q2. The narrow crossings with smallV
are particularly dangerous, as the slopes change very rap
within the intervalDx'V/uq12q2u. Thus, even small error
in the position of the crossing pointxc , or the value ofV, can
cause large errors inqa,b . In this model we assume that th
nondiagonal termV5const. For the real atomV}a2. How-
ever, if the crossing regionDx!1, we can neglect the de
pendence ofV on a.
02250
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C. Semiempirical treatment of the strong interaction of levels:
Multilevel case

Equation ~7! can easily be generalized to a multilev
case, as it simply gives the slope of a physical levela as a
weighted average of the mixed levels. Thus, if the levela can
be expressed as a linear combination of some unpertu
LS statescLn ,Sn

,

ua&5(
n

CnucLn ,Sn
&, ~8!

the resultant slopeqa is given by

qa5(
n

Cn
2qn . ~9!

Here again we neglect weak dependence of the interactioV
on x in comparison to the strong dependence ofCn

2 on x near
crossing points.

Equation ~9! allows us to improve theab initio coeffi-
cientsq if we can find the expansion coefficientsCn in Eq.
~8!. That can be done, for example, by fittingg factors. The
magnetic moment operatorm5g0(L12S) is diagonal inL
andS and, for this reason, does not mix differentLS states.
Consequently, in theLS basis the resultantg factor for the
statea has exactly the same form asqa :

ga5(
n

Cn
2gn . ~10!

If the experimentalg factors are known, one can use Eq.~10!
to find the weightsCn

2 and then find the corrected values
the slopesqa .

Sometimes, the experimental data ong factors are incom-
plete. Then, one can still use a simplified version of Eqs.~9!
and ~10!:

ga5C2ga
01~12C2!ḡ⇒C25

ga2ḡ

ga
02ḡ

, ~11a!

qa5C2qa
01~12C2!q̄. ~11b!

Here C2 is the weight of the dominantLS level in the ex-
perimental data, and the overbar means averaging over
mixing levels. Of course, there is some arbitrariness in
calculation of the averagesḡ andq̄. However, the advantag
of Eqs. ~11! is that only one experimentalg factor is re-
quired.

III. DETAILS OF THE CALCULATION AND RESULTS

As we mentioned above, we performed calculations
energy levels for three values of the parameterx: x25
21/8, x050, andx151/8. All three calculations were don
at the exact same level of approximation, to minimize t
error caused by the incompleteness of the basis sets and
figuration sets. From these calculations we found t
approximations for q: q258@v(x0)2v(x2)# and q1
1-3
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58@v(x1)2v(x0)#. If there were problems with level identi
fication we performed additional calculations forx50.01,
where theLS coupling should be adequate, and identificati
is straightforward. The noticeable difference betweenq2 and
q1 signaled the possibility of a level crossing. In these ca
we applied the semiempirical procedure described in Se
to find the corrected values forq; otherwise, we simply took
the average:q5(q11q2)/2.

A. Zn II

Zn II has the ground state configuration@1s2
•••3d10#4s,

and we are interested in the 4s→4pj transitions. As the
theory here is much simpler than for other ions, we used ZII

to study the importance of the core-valence correlation c
rection and Breit correction to the slopesq. The former cor-
rection was calculated in the Brueckner approximation:

@HDHF1S~E!#C5EC, ~12!

with the self-energy operatorS(E) calculated in the secon
order of MBPT ~the perturbation here is the difference b
tween the exact and the Dirac-Hartree-Fock Hamiltonia
V5H2HDHF). The HDHF was calculated with the magnet
part of the Breit operator included self-consistently. The
tardation part of the Breit operator is known to be sign
cantly smaller@29#, and we completely neglected it here.

The results of our calculations of the frequenciesv and
the slopesq for two transitions 4s→4pj , j 51/2, 3/2, are
given in Table II. One can see that both Brueckner-Coulo
and Brueckner-Coulomb-Breit approximations give ve
good transition frequencies, accurate to 0.2%, although
latter slightly underestimates the fine splitting. Breit corre
tion to the parametersq does not exceed 1%, while core
valence correlations account for the 17% correction.

In Table II we do not give separately the values ofq6 .
The difference between them is close to 1%. Indeed, in
absence of close interacting levels the dependence ofq on x
arises from corrections to the energy of the order ofa4Z4,
which are very small.

B. Si II

Si II has three valence electrons and the ground state
figuration @1s2

•••2p6#3s23p. Excited configurations of in-

TABLE II. Transition frequencies and parametersq for Zn II ~in
cm21). Calculations were done in four different approx
mations: Dirac-Hartree-Fock-Coulomb~DHFC!, Dirac-Hartree-
Fock-Coulomb-Breit ~DHFCB!, Brueckner-Coulomb~BC!, and
Brueckner-Coulomb-Breit~BCB!.

Transition Expt. DHFC DHFCB BC BCB

Transition frequencies
4s1/2 → 4p1/2 48481.077 44610.1 44608.1 48391.2 48389

→ 4p3/2 49355.002 45346.9 45330.0 49263.8 49244
Parametersq5(q11q2)/2

4s1/2 → 4p1/2 1362 1359 1594 1590
→ 4p3/2 2129 2109 2500 2479
02250
s
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terest are 3s3p2 and 3s24s. We made a CI calculation in the
Coulomb approximation on a basis set that includ
1s-8s, 2p-8p, 3d-8d, and 4f ,5f orbitals~we denote it as the
basis set@8spd5 f #). Note that we used virtual orbitals
which were localized within the atom@34#, rather than Dirac-
Fock ones. This provided fast convergence. CI included
single-double~SD! and partly triple excitations from thre
valence configurations listed above. The results of these
culations are given in Table III.

As in Zn, the left and right derivativesq2 and q1 are
close to each other, and all levels with exactly equal quan
numbers are well separated. Astrophysical data exist for
levels 2S1/2 and 2D5/2. The former corresponds to the 3p
→4s transition and has small slopeq, while the latter corre-
sponds to the 3s→3p transition and has a much larger pos
tive q. That is in agreement with the fact that relativist
corrections to the energy usually decrease with increas
principal quantum numbern and increasing orbital quantum
number l. Consequently, for thens→np transition one
should expect large and positiveq, while for np→(n11)s
there should be large cancellation of relativistic correctio
to the upper and lower levels, resulting in smallerq ~see the
discussion in@25,26#!. The dominant correction to our resul
should be from the core-valence correlations. In the rec
calculations for Mg, which has the same core as SiII , the
core-valence corrections to transition frequencies were fo
to be about 4%@33,36#. We conservatively estimate the co
responding correction toq to be 6% of the largerq, i.e.,
30 cm21.

C. Cr II

Cr II has the ground state configuration@1s2
•••3p6#3d5

with five valence electrons. The astrophysical data co
spond to the 3d→4p transition, for which one may expect
negative value ofq. CI calculations here are much mor
complicated than for SiII . There is strong relaxation of th
3d shell in the discussed transition, which requires mo
basicd orbitals. Therefore, we used the@6sp9d6 f # basis set.
In the CI we included only SD excitations. Some of th
triple, quadruple, and octuple excitations were accounted
by means of second order perturbation theory. It was fou
that corresponding corrections to transition frequencies w
of the order of a few percent, and were even smaller for

TABLE III. Transition frequenciesv from the ground state
2P1/2

o , fine-structure splittingsDFS, and parametersq6 for Si II ~in
cm21).

Expt. @35# Theory
v DFS v DFS q2 q1

2P3/2
o 287 287 293 293 295 291

4P1/2 44080 41643 453 451
4P3/2 44191 111 41754 111 565 564
4P5/2 44364 174 41935 181 746 744
2D3/2 55304 54655 509 507
2D5/2 55320 16 54675 20 530 530
2S1/2 65495 65148 40 39
1-4
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parametersq. In general, these corrections did not impro
the agreement with the experiment, so we present only
results in Table IV.

As we mentioned above, there was strong relaxation
the 3d shell in the 3d→4p transition. We were not able to
saturate CI space and completely account for this effect.
cause of that, we estimated the error forq here to be close to
10%.

We have seen before for ZnII and SiII that in the absence
of level crossing the difference betweenq1 and q2 is
smaller than other theoretical uncertainties. In CrII there are
no close levels that may interact with each other, so in
calculation presented in Table IV we determined only
right derivativeq1 . In calculations with different basis se
we checked that the difference betweenq1 andq2 is much
smaller than the value of the given above theoretical e
~see Table I!.

D. FeII

The FeII ion has seven valence electrons in the confi
ration 3d64s and represents the most complicated case.
astrophysical data include five lines in the ba
38 000 cm21–43 000 cm21 and two lines with frequency
close to 62 000 cm21. The first band consists of three clos
but separated multiplets with regular fine-structure splittin
The 62 000 cm21 band is completely different, as the mu
tiplets here strongly overlap and fine-structure intervals
irregular @35#. The characteristic distance between lev
with identical exact quantum numbers is a few hund
cm21, which is comparable to the fine-structure splitting
That means that the levels strongly interact, and even t
identification may be a problem.

In fact, in @35# one of the multiplets of interest, namel
y 6Po, is erroneously assign to the configuration 3d6(7S)4p.
It is an obvious misprint, as there is no term7S for the
configuration 3d6. This term appears, however, in the co
figuration 3d5 and the correct assignment of this multipl
should be 3d5(7S)4s4p. This assignment is in agreeme

TABLE IV. Transition frequenciesv from the ground state
6S5/2, fine-structure splittingDFS, and parametersq for Cr II ~in
cm21!. CI single-double approximation was used for the Coulom
Breit interaction.

Experiment Theory
v DFS v DFS q1

6D5/2 12148 13123 22314
6D7/2 12304 156 13289 165 22153
6F1/2

o 46824 47163 21798
6F3/2

o 46906 82 47244 81 21715
6F5/2

o 47041 135 47378 134 21579
6F7/2

o 47228 187 47565 187 21387
6F9/2

o 47465 237 47803 238 21148
6F11/2

o 47752 287 48091 288 2862
6P3/2

o 48399 48684 21364
6P5/2

o 48491 92 48790 106 21278
6P7/2

o 48632 141 48947 157 21108
02250
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with our calculations and with the experimentalg factor of
the level withJ57/2. We checked that all close levels of th
configuration 3d64p have significantly smallerg factors.

This reassignment has dramatic consequences in term
the corresponding parameterq, as the configurations 3d64p
(4s-4p transition from the ground state! and 3d54s4p
(3d-4p transition! move in the opposite directions from th
ground state configuration 3d64s whenx is changed. It also
causes a number of pseudocrossings to occur right in
vicinity of x50 ~see Fig. 1!.

CI calculations for FeII were done on the basis se
@6spd f# in the SD approximation~see Table V!. Triple ex-
citations were included within second order perturbat
theory and corresponding corrections were found to be r
tively small. One can see from Table V that for the low
band both frequencies andg factors are reproduced rathe
accurately.

The first anomaly takes place at 44 000 cm21, where the
levels 4D7/2

o and 4F7/2
o appear in the reverse order. Theore

cal g factors are also much further fromLS values~1.429
and 1.238!. That means that the theoretical levels are a
pseudocrossing, while the experimental ones already pa
it. Indeed, calculations forx51/8 show that the right order o
levels is restored, although theg factors are still too far from
LS values.

The second anomaly corresponds to the band ab
60 000 cm21. Here the order of the calculated levels diffe
from that of the experimental ones. Note that for this ba
only levels of negative parity withJ57/2 are given in Table
V. Accordingly, all of them can interact with each other.

-

FIG. 1. Example of the typical interaction of levels in the upp
band of FeII. Levels are shown as functions of (a/a0)25x11.
Levels of the configuration 3d64p have similar slopes and strongl
interact with each other. That causes wide pseudocrossings, si
to the one between4F7/2

o (a) and 4D7/2
o (b) shown on the left side of

the plot. The level6P7/2
o (c) of the configuration 3d54s4p moves in

the opposite direction. A series of sharp pseudocrossings takes
near the physical value ofa, marked by a vertical dotted line.
1-5
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Let us estimate how this interaction can affect the slo
q. Five levels from this band belong to the configurati
3d64p and have close slopes with the averageq̄
51360 cm21. Only the level 4F7/2

o has a slope, that is
300 cm21 smaller than the average. The remaining le
6P7/2

o belongs to the configuration 3d54s4p and has a slope
of the opposite signq521519 cm21. Its absolute value is
500 cm21 smaller than for the level8P7/2

o of the same con-
figuration 3d54s4p. That suggests that the levels4F7/2

o and
6P7/2

o strongly interact with each other. This is also in agre
ment with the fact that these levels are the closest neighb
both experimentally and theoretically, and that they cr
somewhere betweenx andx1 .

There is also strong interaction between the lev
2G7/2

o ,4F7/2
o , and 4D7/2

o . That can be seen if one calculat
the scalar products~overlaps! between corresponding wav
functions for different values ofx, such aŝ i (x2)uk(x1)&.
For weakly interacting levels ^ i (x2)uk(x0)&
'^ i (x2)uk(x1)&'d i ,k , so large nondiagonal matrix ele
ments signal that corresponding levels interact.

Interaction of levels2G7/2
o ,4F7/2

o , and 4D7/2
o does not af-

fect the slopesq as strongly, as the interaction of4F7/2
o and

6P7/2
o , so we can account for the former in a less accur

way, but it is important to include the latter as accurately
possible.

The level 6P7/2
o interacts with some linear combination o

levels 2G7/2
o ,4F7/2

o , and 4D7/2
o . The slopes andg factors of

the latter are relatively close to each other, so we can sim
take the average for all three:

ḡ51.185, q̄51297. ~13!

Now we can use the experimentalg factor of the state6P7/2
o

and Eq.~11! to determine the mixing:

TABLE V. Transition frequenciesv from the ground state
6D9/2, g factors, and parametersq6 for FeII ~in cm!.

Experiment Theory
v g v g g(LS) q2 q1

6D9/2
o 38459 1.542 38352 1.556 1359 1363

6D7/2
o 38660 1.584 38554 1.586 1.587 1522 151

6F11/2
o 41968 41864 1.455 1496 1508

6F9/2
o 42115 1.43 42012 1.434 1615 1631

6F7/2
o 42237 1.399 42141 1.396 1.397 1738 173

6P7/2
o 42658 1.702 42715 1.709 1.714 1241 126

4D7/2
o 44447 1.40 44600 1.345 1.429 1791 183

4F7/2
o 44754 1.29 44386 1.327 1.238 1608 160

8P7/2
o 54490 54914 1.936 1.93722084 22086

4G7/2
o 60957 0.969 63624 0.978 0.984 1640 164

4H7/2
o 61157 0.720 63498 0.703 0.667 1296 124

4D7/2
o 61726 1.411 66145 1.398 1.429 1194 124

4F7/2
o 62066 1.198 65528 1.252 1.238 1071 105

6P7/2
o 62172 1.68 65750 1.713 1.71421524 21514

2G7/2
o 62323 64798 0.882 0.889 1622 1605
02250
s
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C25
1.682ḡ

1.7132ḡ
50.937, ~14!

q~6P7/2
o !521342. ~15!

Equation ~15! corresponds to the correctiondq51177.
Therefore, for the closest level4F7/2

o this model gives an
estimate

q~4F7/2
o !5q̄2dq51120. ~16!

Equations~15! and~16! show that correction for the mix
ing is not very large. That corresponds to the fact that
experimentalg factor of the level6P7/2

o is significantly larger
than anyg factors of the levels of the configuration 3d64p.
Thus, the interaction for this level is relatively small. On t
contrary, the levels of the configuration 3d64p strongly in-
teract with each other, but corresponding changes of
slopes are also relatively small~since theq values for these
strongly interacting levels are approximately the same!.

We estimate the accuracy of our calculations for the low
band of FeII to be about 150 cm21, and approximately
300 cm21 for the values~15! and ~16!.

E. Ni II

Ni II has the ground state configuration 3d9. The spectrum
is somewhat simpler than for FeII . There are also
pseudocrossings here, but they either lie far fromx50 or are
rather wide. That makes their treatment slightly easier. N
ertheless, our results significantly differ from previous calc
lations @28#.

CI calculations were done for the Coulomb potential a
included SD and partly triple excitations on the basis
@5spd f#. We calculated the five lowest odd levels withJ
55/2 and five levels withJ57/2 for x2 , x0, and x1 , and
used parabolic extrapolation for the interval20.4<x<
10.3 ~see Fig. 2!. It is seen that the theory accurately repr
duces the relative positions of all levels. The overall agr
ment between the theory and the experiment becomes c
to perfect, if all experimental levels are shifted down,
1000 cm21 as is done in Fig. 2. Note that this shift cons
tutes only 2% of the average transition frequency.

The calculatedg factors are generally in agreement wi
the experiment@35# and noticeably different from the pur
LS values~see Table VI!. However, for the level2F7/2

o the
theoreticalg factor is smaller than theLS value, while the
experimental one is larger. There are no nearby levels
may mix with this one and move theg factor closer to ex-
periment. On the other hand, the difference from the exp
ment is only 2% and may be within experimental accura

Figure 2 shows that the levels2G7/2
o (g) and 2F7/2

o (h)
cross atx'0.3, and they already strongly interact atx50.
The theoretical splitting for these levels is 10% larger th
the experimental one. Consequently, they are in fact e
closer to the crossing point than is predicted by the theo
1-6
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The experimental splitting is equal to the theoretical one
larger value ofa corresponding tox'0.15. At x50.15 the
slopes of these levels are2265 and2590, and forx50 they
are2124 and2812, respectively. Note that the sum of th
slopes atx50.15 differs by 80 cm21 from the sum atx
50. According to Eq.~7! for a two-level system the sum i
constant. This means that these two levels are repelled f
the lower-lying level4F7/2

o (e). Taking this analysis into ac
count, we suggest an average betweenx50 andx50.15 as
our final value:q(2F7/2

o )52700(250).

FIG. 2. Dependence of the odd levels of NiII on (a/a0)25x
11. Solid lines correspond toJ55/2 and dashed lines toJ57/2.
The experimental positions of the lines are shown as short hori
tal lines and are all shifted down by 1000 cm21. The assign-
ment of the levels from bottom up: 4D7/2,5/2

o (a,b),
4G7/2,5/2

o (c,d),4F7/2,5/2
o (e, f ), 2G7/2

o (g),2F7/2
o (h),2D5/2

o ( i ), and
2F5/2

o ( j ).

TABLE VI. Transition frequenciesv from the ground state
2D5/2, g factors, and parametersq6 for Ni II ~in cm21).

Experiment Theory
v g v g g(LS) q2 q1

2D3/2 1507 1579 0.800 1559 1552
4D7/2

o 51558 1.420 50415 1.423 1.42922405 22425
4D5/2

o 52739 1.356 51640 1.360 1.37121217 21245
4G7/2

o 54263 1.02 53150 1.016 0.98421334 21387
4G5/2

o 55019 0.616 53953 0.617 0.5712370 2418
4F7/2

o 55418 1.184 54323 1.183 1.23821104 21124
4F5/2

o 56075 0.985 55063 0.986 1.0292332 2334
2G7/2

o 56372 0.940 55284 0.933 0.889 260 2188
2F7/2

o 57080 1.154 56067 1.128 1.1432911 2713
2D5/2

o 57420 1.116 56520 1.108 1.20021419 21438
2F5/2

o 58493 0.946 57589 0.959 0.857 235 25
02250
r

m

IV. CONCLUSIONS

In this paper we present refined calculations of the para
etersq, which determine thea dependence of the transitio
frequencies for a number of ions used in the astrophys
search fora variation. These ions appear to be very differe
from the theoretical point of view. Because of that we had
use different methods and different levels of approximat
for them. The final accuracy of our results differs not on
for different ions, but also for different transitions.

The simplest system is ZnII , which has one valence elec
tron. On the other hand, this is the heaviest ion and it has
largest core, which includes a 3d10 shell. That gave us the
opportunity to study corrections toq from the core-valence
correlations and from Breit interaction. We found the form
to be about 17% and the latter to be less than 1%. For lig
ions the Breit interaction should be even smaller and can
safely neglected. Other ions also have much smaller
more rigid cores, so one might expect that core-valence
relations are a few times weaker there in comparison to
That allows us to neglect core-valence correlations for
other ions discussed in this paper.

Si II has the smallest core 1s2
•••2p6 and three valence

electrons. For neutral Mg, which has the same core, the c
valence corrections to the 3s→3p transition frequencies
were found to be about 4%@33,36#. The CI calculation for
Si II is relatively simple, and the errors associated with
completeness of CI space are small. Thus, our estimate o
accuracy for Si on 6% level seems to be rather conserva

Cr, Fe, and Ni have the core 1s2
•••3p6 and the core

excitation energy varies from 2 a.u. for CrII to 2.6 a.u. for
Ni II . In comparison, the core excitation energy for ZnII is
0.9 a.u. Therefore, we estimate the core-valence correla
corrections for these ions to be at least two times sma
than for ZnII .

Additional error here is associated with the incomple
ness of the CI space. These ions have from five to n
valence electrons and the CI space cannot be saturated
estimate the corresponding uncertainty we performed sev
calculations for each ion using different basis sets and
different computer packages described in Sec. II. The b
Dirac-Hartree-Fock orbitals were calculated for differe
configurations~for example, for the ground state configur
tion and for the excited state configuration, etc.!.

Supplementary information on the accuracy of our cal
lations can be obtained from comparison of calculated sp
tra andg factors with experimental values. The latter appe
to be very important, as they give information about electr
coupling, which depends on relativistic corrections and
interaction betweenLS multiplets. Our results for CrII ap-
pear to be very close for different calculations and are
good agreement with the experiment in terms of both
gross level structure and spin-orbit splittings~see Table IV!,
so we estimate our final error here to be about 10–12 %

The largest theoretical uncertainties appear for FeII and
Ni II , where the number of valence electrons is largest
the interaction of levels is strongest. Here we had to inclu
semiempirical fits to improve the agreement between
theory and the experiment. We took into account the size

n-
1-7
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these semiempirical corrections in estimates of the accu
of the calculated values ofq.

The final results are presented in Table I. Note again
they are based on several independent calculations
formed using two different computer codes. Some of
intermediate results are given in Tables II–VI.
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