TI as three electron atom.

Mikhail Kozlov

March 12, 2001. Updated: April 7, 2001

Spectrum of TI for Coulomb and Coulomb-Gaunt potentials (1/cm).

	CI+M	Exper.	
	С	C-G	
$6p_{1/2}^{*}$	2.0742	2.0720	2.0722
$6p_{3/2}$	7925	7836	7793
$7p_{1/2}$	34193	34087	34160
$7p_{3/2}$	35215	35098	35161
$7s_{1/2}$	26583	26455	26478
$6d_{3/2}$	36363	36208	36118
$6d_{5/2}$	36469	36321	36200

(*) The three electron valence energy in a.u.

Hyperfine constants for ^{205}TI (MHz).

		4			
$A_{6p_{1/2}}$	$A_{6p_{\mathbf{3/2}}}$	A 7 $p_{\scriptscriptstyle 1/2}$	$A_{7p_{\mathbf{3/2}}}$	$A_{7s_{1/2}}$	$A_{6d_{\mathbf{3/2}}}$
17339	1291	1940	187	7579	21
924	-1369	-102	112	3799	-185
3428	-45	331	-56	765	114
959	359	103	73	1031	5
-1071	-31	-92	-9	-269	3
-1389	-161	-113	-19	-75	-19
1731	120	133	4	-22	21
209	88	14	6	-29	-1
-467	-4	-20	-3	-113	0
21663	248	2193	295	12666	-41
21311	265	2155	309	12297	-43
	$\begin{array}{r} A_{6p_{1/2}} \\ 17339 \\ 924 \\ 3428 \\ 959 \\ -1071 \\ -1389 \\ 1731 \\ 209 \\ -467 \\ \hline 21663 \\ 21311 \end{array}$	$\begin{array}{c c} A_{6p_{1/2}} & A_{6p_{3/2}} \\ 17339 & 1291 \\ 924 & -1369 \\ 3428 & -45 \\ 959 & 359 \\ -1071 & -31 \\ -1389 & -161 \\ 1731 & 120 \\ 209 & 88 \\ -467 & -4 \\ \hline 21663 & 248 \\ 21311 & 265 \\ \end{array}$	$\begin{array}{c ccccc} A_{6p_{1/2}} & A_{6p_{3/2}} & A_{7p_{1/2}} \\ 17339 & 1291 & 1940 \\ 924 & -1369 & -102 \\ 3428 & -45 & 331 \\ 959 & 359 & 103 \\ -1071 & -31 & -92 \\ -1389 & -161 & -113 \\ 1731 & 120 & 133 \\ 209 & 88 & 14 \\ -467 & -4 & -20 \\ \hline 21663 & 248 & 2193 \\ 21311 & 265 & 2155 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

E1 amplitudes for TI in L-gauge (a.u.).

		DF	CI	Tot.	Exper.
$6p_{1/2} \rightarrow$	$7s_{1/2}$	2.049	1.863	1.77	1.81(2)
\rightarrow	$6d_{3/2}$	2.722	2.454	2.30	2.30(9)
$6p_{3/2} \rightarrow$	$7s_{1/2}$	3.966	3.466	3.35	3.28(4)
\rightarrow	$6d_{3/2}$	1.633	1.472	1.40	1.36(7)
\rightarrow	$6d_{5/2}$	4.840	4.292	4.08	3.8(2)
$7p_{1/2} \rightarrow$	$7s_{1/2}$	6.618	6.152	5.96	5.94(6)
\rightarrow	$6d_{3/2}$	11.980	10.874	10.86	
$7p_{3/2} \rightarrow$	$7s_{1/2}$	8.794	8.252	7.98	7.90(8)
\rightarrow	$6d_{3/2}$	5.395	4.887	4.90	
\rightarrow	$6d_{5/2}$	16.300	14.799	14.88	

Polarizabilities for TI (a.u.).

	Valence	Core	δ Core	Total	Exper.
$\alpha_0(6p_{1/2})$	43.47	6.23	-0.51	49.2	
$\alpha_0(6p_{3/2})$	73.79	6.23	-0.48	79.6	
$\alpha_{2}(6p_{3/2})$	-25.04	0	0.06	-25.0	-24.2(3)

$E1_{\text{PNC}}$ amplitude for $6p_{1/2} \rightarrow 6p_{3/2}$ transition in ^{205}TI ($i \cdot 10^{-10}(-Q_w/N)$ a.u.).

	(H_P)	(E1)	
CI	-3.420	-2.988	
$H_{\sf eff}$ & RPA	-0.726	+0.001	
A_{σ}	+0.129	+0.112	
$A_{\sf sbt}$	+0.103	+0.077	
$A_{\sf tp}$	-0.029	-0.053	
SR	-0.004	-0.002	
Subtotal -6.81			
Normalization	+0.14		
Total	-6.67		
M1 amplitu	de (10^{-3})	a.u.)	
CI+MBPT-II	4.1	.45	
MBPT-III(1e)	4.149		
$\mathcal{R} = 10^8 imes \mathrm{Im} rac{E1_{PNC}}{M1}$			
$\left(Q_w = Q_w^{SM} = -116.8 ight)$			
-15.2(4)			

Theoretical results for $E1_{PNC}$ for $6p_{1/2} \rightarrow 6p_{3/2}$ transition in ${}^{205}TI$ $(i \cdot 10^{-10}(-Q_w/N) \text{ a.u.}).$

Novikov <i>et al</i> (76)	-7.0 (20%)
Henley & Wilets (76)	-9.0
Henley <i>et al</i> (77)	-6.2
Neuffer & Commins (77)	-8.8
Dzuba <i>et al</i> (87)	-6.6 (3%)
Hartley <i>et al</i> (90)	-6.4 (10%)
Hartley & Sandars (90)	-7.7 (9%)
Liu & Johnson (96)	-7.1 (6%)
Kozlov, Porsev, & Johnson (01)	-6.7 (2.5%)

Experimental and theoretical values of $\mathcal{R} = 10^8 \times \frac{\mathrm{Im}E1_{\mathrm{PNC}}}{M1} \text{ for } 6p_{1/2} \rightarrow 6p_{3/2}$ transition in $^{205}\mathrm{TI}$

Experiment

Oxford	Edwards <i>et al</i> (1995)	-15.68(0.45)
	Majumder & Tsai (1999) ¹	-14.71 (0.45)
Seattle	Vetter <i>et al</i> (1995)	-14.68(0.17)

Theory

(Standard model value $Q_W = -116.8$ assumed)

Novosibirsk	Dzuba <i>et al</i> (1987)	-15.1(0.5)
Notre Dame	Liu <i>et al</i> (1996)	-16.1(1.0)
Gatchina	Kozlov <i>et al</i> (1997)	-15.0(0.6)
Gatchina-ND	Kozlov <i>et al</i> (2001)	-15.2(0.4)

¹ scaling of Oxford result

Calculation of the PNC amplitude in Cs

Hyperfine constants for 133 Cs (MHz).

	DF	MBPT	Breit	Theory	Exper.
$6s_{1/2}$	1424	2298	+5.0	2302	2298
$6p_{1/2}$	160.9	293.3	-0.2	293.5	292
$6p_{3/2}$	23.9	51.2	-0.0	51.2	50.3
$7s_{1/2}$	391.4	546.0	+0.8	546.8	546
$7p_{1/2}$	57.6	94.0	-0.0	94.0	94.3
$7p_{3/2}$	8.6	17.1	-0.0	17.1	

Stark shift $\delta \nu_{6s,7s}$ for the $6s \rightarrow 7s$ transition $(Hz/(V/cm)^2)$ and Stark-induced vector amplitude $\beta_{6s,7s}$ (a.u.).

 $\delta\nu_{6s,7s} = \begin{cases} .7259 \text{ theory,} \\ .7262 \text{ experiment (Bennett$ *et al* $).} \end{cases}$ $\beta_{6s,7s} = \begin{cases} 26.89 \text{ theory,} \\ 27.02(8) \text{ experiment (Bennett$ *et al* $).} \end{cases}$

Theoretical results for $E1_{PNC}(6s, 7s)$ for ^{133}Cs in the units $i \cdot 10^{-11}Q_W/(-N)$ a.u.

	MBPT	Breit	Total
[1]	908		908
[2]	907	.002	905
[3]		.008	
[4]	907	.005	902
[5]	905	.004	901

- [1] Dzuba, Flambaum, and Sushkov. Phys.Lett.A 141, 147 (89).
- [2] Blundell, Sapirstein, and Johnson. Phys.Rev.D 45, 1602 (92).
- [3] Derevianko. Phys.Rev.Lett. **85**, 1618 (00).
- [4] Dzuba, Harabati, Johnson, and Safronova. Phys.Rev.A 63, 044103 (01).
- [5] Kozlov, Porsev, and Tupitsyn. Phys.Rev.Lett. 86, 3260 (01).

Theoretical uncertainties

1. Electron correlations $\sim 0.5\%$ 2. QED (vacuum polarization, etc.)0.2 - 0.4%3. Nuclear structure0.1 - 0.3%

Atomic tests of standard model. Weak charges of ¹³³Cs and ²⁰⁵TI

SM Exper.

- $Q_{\rm W}(^{133}{\rm Cs})$ -73.09(3) -72.5(3)_{exp.}(7)_{theor.} $Q_{\rm W}(^{205}{\rm Tl})$ -116.8(2) -113(1)_{exp.}(3)_{theor.}