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SEMI-EMPIRICAL WAVE FUNCTION

The main assumption of the method is that the WF of the

molecule can be written as follows

|Λ, Ω〉 =

|λ = Λ, ω = Ω〉unpaired|Λ = 0, Ω = 0〉coupled

In the vicinity of the heavy nucleus (Hg or Yb) the WF can be

expanded in spherical waves

|λ, ω〉 =
∑

l,j(=l±1/2)
Cl,j|l, j, ω〉

Here |l, j, ω〉 are normalized four-component spherical waves:

|l, j, ω〉 =




fl,jY
l
j,ω

igl,jY
l′
j,ω




f and g are radial functions, Y l
j,ω is the spherical spinor, l′ = 2j− l.



At the small distances solutions of the Dirac equation are:



fl,j

gl,j




=
k

|k|
al

Z1/2r




(γ + k)J2γ(x)− x
2J2γ−1(x)

αZJ2γ(x)




where

x =
√

8Zr ,

γ =
√
(j + 1/2)2 − α2Z2 ,

k = (l − j)(2j + 1)

For each l 6= 0 a pair of functions with j = l− 1/2 and j = l + 1/2

on the large distances have to form nonrelativistic function

|l,ml = λ, ω〉. It means, that

C1,3/2 = −
√

2C1,1/2,

C2,5/2 = −
√
3/2C2,3/2, etc.

For small r molecular WF is defined by the products

σs = C0,1/2a0, σp = C1,1/2a1, etc.,



The hyperfine axial tensor A:

A =
A‖ + 2A⊥
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Ad =
A‖ − A⊥
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Single index k is used instead of l, j;

hi,j = −gnα

2mp

∞∫

0
(figj + gifj)dr

gn is G-factor of the nucleus; mp is the proton mass.



Using experimental values for A and Ad we obtain equations for

parameters σi. For YbF molecule these equations have the form:




31170σ2
s − 1330σ2

p − 50σ2
d + · · · = 7617

5510σ2
p + 370σ2

d + · · · = 102

The right hand side correspond to the experimental values for A

and Ad in MHz measured by Van Zee et al.

Coefficients Cl,j are normalized to unity. The semi-classical analy-

sis gives a2
l ≈ 0.3. It results in approximate normalization condition

σ2
s + 3σ2

p +
5

2
σ2

d ≤ 0.3
∑

l,j
C2

l,j = 0.3

The solution which meets this condition correspond to the negligible

contribution of the d-wave (less then 5%).

σ2
s = 0.24, σ2

p = 0.019

σsσp = −0.067



SPIN-ORBIT INTERACTION

Mixing of the ground state with the first excited state

(λ = 1, ω = 1/2):

ξ =
〈λ = 1, ω|Hso|λ = 0, ω〉

E0 − E1

For YbF that is equal to

ξ = 0.37
〈6p, λ = 1, ω|Hso|6p, λ = 0, ω〉

18000 cm−1
≈ −0.03

For HgF molecule this mixing is only slightly larger. It means, that

the accuracy of the equations

C1,3/2 = −
√

2C1,1/2,

C2,5/2 = −
√
3/2C2,3/2, etc.

is about 3%.



P - AND T -ODD INTERACTIONS

Interaction of the EDM of the electron de with the molecular

electric field (−∇φ):

Hd = 2de




0 0

0 ~σ



(−∇φ)

〈λ, ω|Hd|λ, ω〉 = Wddeω

Wd = 8
∑

i
C−iCi

∞∫

0
g−igi

dφ

dr
r2dr

= 16α2Z3
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For YbF molecule this expression gives

Wd = 174σsσp − 15σpσd + ... = −11.7



Electron–nuclear scalar interaction

HS = i
Gα√

2
ZkSγ0γ5n(r)

G is the Fermi constant; γi are the Dirac matrices; n(r) is the

nuclear density normalized to unity. Dimensionless factor ZkS is:

ZkS = ZkS,p + NkS,n.

Interaction of the nuclear magnetic quadrupole moment M with

the molecular magnetic field:

HM = − M

4I(2I − 1)
Ti,k

3

2r5
γ0γjrl(εj,l,irk + εj,l,kri) ,

Ti,k = IiIk + IkIi − 2

3
I(I + 1)δi,k

P -odd, T -even interaction of the nuclear anapole moment with

valence electron:

HA =
Gα√

2
kAIγ0~γn(r)

kA is the anapole moment constant for the ytterbium nucleus

(Khriplovich et al).



SPIN-ROTATIONAL HAMILTONIAN

Hsr = BN2 + γS ·N + S ·AI + S ·A′I′

+µ0S ·GB−Dn · E

+WAkAn× S · I + (WSkS + Wdde)S · n

+
−1

4I(2I − 1)
Ti,k(

1

2
Qq0nink + 2MWMSink).

In this expression I and I′ are the spins of Yb and F nuclei; N is

the rotational angular momentum; B and γ are the rotational and

the spin-doubling constants. Tensors A and A′ correspond to the

hyperfine structures on two nuclei. µ0 is the Bohr magneton; n is

the molecular axis unit vector directed from Yb (or Hg) to F.



Experimental values for Hsr parameters for 171Yb19F molecule:

B = 7237 MHz;

A‖ = 7822 MHz, A⊥= 7513 MHz (I = 1/2);

A′
‖ = 220 MHz, A′

⊥ = 134 MHz (I ′ = 1/2);

G‖ = 1.9975, G⊥ = 1.9954

Constant γ is found from the relation (Knight et al)

γ = −2B(G⊥ −G‖) ≈ 30 MHz



The rough estimate for D:

D = −R0 + 2C0,1/2C1,1/2〈6s|r|6p〉

≈ −5.2 · 10−18 CGSE,

R0 is the internuclear distance.

Constants q0 and WM do not vanish for 173Yb (I = 5/2). If

Q = 2.8 · 10−24 cm2, then

Qqval
0 = 1880 MHz.

Values of the constants Wi are as follows:

WA = 0.73 kHz;

WS = −48 kHz;

Wd = −1.5 · 1025 Hz

e cm
;

WM = 2.1 · 1033 Hz

e cm2
;



BEST EXPERIMENTAL LIMITS ON THE

CONSTANTS OF P - AND T -ODD INTERACTIONS

AND CORRESPONDING FREQUENCY SHIFTS IN

MOLECULES

Const. Group Year Object Upper bound Frequency shift (Hz)

TlF HgF YbF

QS Seatle 1993 199Hg 3 · 10−50e cm3 5 · 10−5 – –

CT ” ” ” 2 · 10−8 3 · 10−5 – –

CS ” ” ” 1 · 10−6 1 · 10−4 0.2 0.05

M Amherst 1989 133Cs 1 · 10−33e cm2 – 1.5 0.7

de Berkeley 1990 Tl 1 · 10−26e cm – 0.5 0.15


