Enhancement of the electric dipole moment of the electron in diatomic molecules YbF and

HgF

M. G. Kozlov. Zh. Exp. Teor. Fiz. 89, 1933 (1985)
M. G. Kozlov, V. F. Ezhov. Phys. Rev. A, 49, 4502 (1994)

SEMI-EMPIRICAL WAVE FUNCTION

The main assumption of the method is that the WF of the molecule can be written as follows

$$
\begin{aligned}
& |\Lambda, \Omega\rangle= \\
& |\lambda=\Lambda, \omega=\Omega\rangle_{\text {unpaired }}|\Lambda=0, \Omega=0\rangle_{\text {coupled }}
\end{aligned}
$$

In the vicinity of the heavy nucleus (Hg or Yb) the WF can be expanded in spherical waves

$$
|\lambda, \omega\rangle=\sum_{l, j(=l \pm 1 / 2)} C_{l, j}|l, j, \omega\rangle
$$

Here $|l, j, \omega\rangle$ are normalized four-component spherical waves:

$$
|l, j, \omega\rangle=\binom{f_{l, j} Y_{j, \omega}^{l}}{i g_{l, j} Y_{j, \omega}^{l^{\prime}}}
$$

f and g are radial functions, $Y_{j, \omega}^{l}$ is the spherical spinor, $l^{\prime}=2 j-l$.

At the small distances solutions of the Dirac equation are:

$$
\binom{f_{l, j}}{g_{l, j}}=\frac{k}{|k|} \frac{a_{l}}{Z^{1 / 2} r}\binom{(\gamma+k) J_{2 \gamma}(x)-\frac{x}{2} J_{2 \gamma-1}(x)}{\alpha Z J_{2 \gamma}(x)}
$$

where

$$
\begin{aligned}
x & =\sqrt{8 Z r} \\
\gamma & =\sqrt{(j+1 / 2)^{2}-\alpha^{2} Z^{2}}, \\
k & =(l-j)(2 j+1)
\end{aligned}
$$

For each $l \neq 0$ a pair of functions with $j=l-1 / 2$ and $j=l+1 / 2$ on the large distances have to form nonrelativistic function $\left|l, m_{l}=\lambda, \omega\right\rangle$. It means, that

$$
\begin{aligned}
& C_{1,3 / 2}=-\sqrt{2} C_{1,1 / 2} \\
& C_{2,5 / 2}=-\sqrt{3 / 2} C_{2,3 / 2}, \text { etc. }
\end{aligned}
$$

For small r molecular WF is defined by the products

$$
\sigma_{s}=C_{0,1 / 2} a_{0}, \quad \sigma_{p}=C_{1,1 / 2} a_{1}, \quad \text { etc. }
$$

The hyperfine axial tensor \mathbf{A} :

$$
\begin{aligned}
A= & \frac{A_{\|}+2 A_{\perp}}{3} \\
= & \frac{4}{3} C_{-1}^{2} h_{-1,-1}+\frac{4}{9} C_{1}^{2} h_{1,1}+\frac{8}{9} C_{-2}^{2} h_{-2,-2} \\
& +\frac{8}{15} C_{2}^{2} h_{2,2}+\frac{4}{5} C_{-3}^{2} h_{-3,-3} \\
& -\frac{8 \sqrt{2}}{9} C_{1} C_{-2} h_{1,-2}-\frac{8 \sqrt{6}}{15} C_{2} C_{-3} h_{2,-3} \\
A_{d}= & \frac{A_{\|}-A_{\perp}}{3} \\
= & -\frac{8}{9} C_{1}^{2} h_{1,1}-\frac{8}{45} C_{-2}^{2} h_{-2,-2} \\
& -\frac{8}{15} C_{2}^{2} h_{2,2}-\frac{8}{35} C_{-3}^{2} h_{-3,-3} \\
& -\frac{2 \sqrt{2}}{9} C_{1} C_{-2} h_{1,-2}-\frac{2 \sqrt{6}}{15} C_{2} C_{-3} h_{2,-3}
\end{aligned}
$$

Single index k is used instead of l, j;

$$
h_{i, j}=-\frac{g_{n} \alpha}{2 m_{p}} \int_{0}^{\infty}\left(f_{i} g_{j}+g_{i} f_{j}\right) d r
$$

g_{n} is G-factor of the nucleus; m_{p} is the proton mass.

Using experimental values for A and A_{d} we obtain equations for parameters σ_{i}. For YbF molecule these equations have the form:

$$
\left\{\begin{aligned}
31170 \sigma_{s}^{2}-1330 \sigma_{p}^{2}-50 \sigma_{d}^{2}+\cdots & =7617 \\
5510 \sigma_{p}^{2}+370 \sigma_{d}^{2}+\cdots & =102
\end{aligned}\right.
$$

The right hand side correspond to the experimental values for A and A_{d} in MHz measured by Van Zee et al.

Coefficients $C_{l, j}$ are normalized to unity. The semi-classical analysis gives $a_{l}^{2} \approx 0.3$. It results in approximate normalization condition

$$
\sigma_{s}^{2}+3 \sigma_{p}^{2}+\frac{5}{2} \sigma_{d}^{2} \leq 0.3 \sum_{l, j} C_{l, j}^{2}=0.3
$$

The solution which meets this condition correspond to the negligible contribution of the d-wave (less then 5%).

$$
\begin{aligned}
& \sigma_{s}^{2}=0.24, \quad \sigma_{p}^{2}=0.019 \\
& \sigma_{s} \sigma_{p}=-0.067
\end{aligned}
$$

SPIN-ORBIT INTERACTION

Mixing of the ground state with the first excited state $(\lambda=1, \omega=1 / 2):$

$$
\xi=\frac{\langle\lambda=1, \omega| H_{s o}|\lambda=0, \omega\rangle}{E_{0}-E_{1}}
$$

For YbF that is equal to

$$
\xi=0.37 \frac{\langle 6 p, \lambda=1, \omega| H_{s o}|6 p, \lambda=0, \omega\rangle}{18000 \mathrm{~cm}^{-1}} \approx-0.03
$$

For HgF molecule this mixing is only slightly larger. It means, that the accuracy of the equations

$$
\begin{aligned}
& C_{1,3 / 2}=-\sqrt{2} C_{1,1 / 2} \\
& C_{2,5 / 2}=-\sqrt{3 / 2} C_{2,3 / 2}, \text { etc. }
\end{aligned}
$$

is about 3%.

P - AND T-ODD INTERACTIONS

Interaction of the EDM of the electron d_{e} with the molecular electric field $(-\nabla \phi)$:

$$
H_{d}=2 d_{e}\left(\begin{array}{cc}
0 & 0 \\
0 & \vec{\sigma}
\end{array}\right)(-\nabla \phi)
$$

$$
\langle\lambda, \omega| H_{d}|\lambda, \omega\rangle=W_{d} d_{e} \omega
$$

$$
\begin{aligned}
& W_{d}=8 \sum_{i} C_{-i} C_{i} \int_{0}^{\infty} g_{-i} g_{i} \frac{d \phi}{d r} r^{2} d r \\
& =16 \alpha^{2} Z^{3}\left(\frac{\sigma_{s} \sigma_{p}}{\gamma_{1 / 2}\left(4 \gamma_{1 / 2}^{2}-1\right)}-\frac{\sqrt{2} \sigma_{p} \sigma_{d}}{\gamma_{3 / 2}\left(4 \gamma_{3 / 2}^{2}-1\right)}\right)
\end{aligned}
$$

For YbF molecule this expression gives

$$
W_{d}=174 \sigma_{s} \sigma_{p}-15 \sigma_{p} \sigma_{d}+\ldots=-11.7
$$

Electron-nuclear scalar interaction

$$
H_{S}=i \frac{G \alpha}{\sqrt{2}} Z k_{S} \gamma_{0} \gamma_{5} n(\mathbf{r})
$$

G is the Fermi constant; γ_{i} are the Dirac matrices; $n(\mathbf{r})$ is the nuclear density normalized to unity. Dimensionless factor $Z k_{S}$ is: $Z k_{S}=Z k_{S, p}+N k_{S, n}$.

Interaction of the nuclear magnetic quadrupole moment M with the molecular magnetic field:

$$
\begin{aligned}
H_{M} & =-\frac{M}{4 I(2 I-1)} T_{i, k} \frac{3}{2 r^{5}} \gamma_{0} \gamma_{j} r_{l}\left(\epsilon_{j, l, i} r_{k}+\epsilon_{j, l, k} r_{i}\right) \\
T_{i, k} & =I_{i} I_{k}+I_{k} I_{i}-\frac{2}{3} I(I+1) \delta_{i, k}
\end{aligned}
$$

P-odd, T-even interaction of the nuclear anapole moment with valence electron:

$$
H_{A}=\frac{G \alpha}{\sqrt{2}} k_{A} \mathbf{I} \gamma_{0} \vec{\gamma} n(\mathbf{r})
$$

k_{A} is the anapole moment constant for the ytterbium nucleus (Khriplovich et al).

SPIN-ROTATIONAL HAMILTONIAN

$$
\begin{aligned}
H_{s r}= & B \mathbf{N}^{2}+\gamma \mathbf{S} \cdot \mathbf{N}+\mathbf{S} \cdot \mathbf{A I}+\mathbf{S} \cdot \mathbf{A}^{\prime} \mathbf{I}^{\prime} \\
& +\mu_{0} \mathbf{S} \cdot \mathbf{G B}-D \mathbf{n} \cdot \mathbf{E} \\
& +W_{A} k_{A} \mathbf{n} \times \mathbf{S} \cdot \mathbf{I}+\left(W_{S} k_{S}+W_{d} d_{e}\right) \mathbf{S} \cdot \mathbf{n} \\
& +\frac{-1}{4 I(2 I-1)} T_{i, k}\left(\frac{1}{2} Q q_{0} n_{i} n_{k}+2 M W_{M} S_{i} n_{k}\right)
\end{aligned}
$$

In this expression \mathbf{I} and \mathbf{I}^{\prime} are the spins of Yb and F nuclei; \mathbf{N} is the rotational angular momentum; B and γ are the rotational and the spin-doubling constants. Tensors \mathbf{A} and \mathbf{A}^{\prime} correspond to the hyperfine structures on two nuclei. μ_{0} is the Bohr magneton; \mathbf{n} is the molecular axis unit vector directed from Yb (or Hg) to F .

Experimental values for $H_{s r}$ parameters for ${ }^{171} \mathrm{Yb}^{19} \mathrm{~F}$ molecule:

$$
\begin{array}{ll}
B=7237 M H z ; \\
A_{\|}=7822 M H z, & A_{\perp}=7513 M H z(I=1 / 2) ; \\
A_{\|}^{\prime}=220 M H z, & A_{\perp}^{\prime}=134 M H z\left(I^{\prime}=1 / 2\right) ; \\
G_{\|}=1.9975, & G_{\perp}=1.9954
\end{array}
$$

Constant γ is found from the relation (Knight et al)

$$
\gamma=-2 B\left(G_{\perp}-G_{\|}\right) \approx 30 M H z
$$

The rough estimate for D :

$$
\begin{aligned}
D & =-R_{0}+2 C_{0,1 / 2} C_{1,1 / 2}\langle 6 s| r|6 p\rangle \\
& \approx-5.2 \cdot 10^{-18} C G S E
\end{aligned}
$$

R_{0} is the internuclear distance.
Constants q_{0} and W_{M} do not vanish for ${ }^{173} \mathrm{Yb}(I=5 / 2)$. If $Q=2.8 \cdot 10^{-24} \mathrm{~cm}^{2}$, then

$$
Q q_{0}^{v a l}=1880 M H z
$$

Values of the constants W_{i} are as follows:

$$
\begin{aligned}
W_{A} & =0.73 \mathrm{kHz} \\
W_{S} & =-48 \mathrm{kHz} \\
W_{d} & =-1.5 \cdot 10^{25} \frac{\mathrm{~Hz}}{e c m} \\
W_{M} & =2.1 \cdot 10^{33} \frac{\mathrm{~Hz}}{e e^{2}}
\end{aligned}
$$

BEST EXPERIMENTAL LIMITS ON THE

CONSTANTS OF P - AND T-ODD INTERACTIONS

 AND CORRESPONDING FREQUENCY SHIFTS IN MOLECULES| Const. | Group | Year | Object | Upper bound | Frequency shift (Hz) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | TlF | HgF | YbF |
| Q_{S} | Seatle | 1993 | ${ }^{199} \mathrm{Hg}$ | $3 \cdot 10^{-50} \mathrm{ecm}^{3}$ | $5 \cdot 10^{-5}$ | - | - |
| C_{T} | " | " | " | $2 \cdot 10^{-8}$ | $3 \cdot 10^{-5}$ | - | - |
| C_{S} | " | " | " | $1 \cdot 10^{-6}$ | $1 \cdot 10^{-4}$ | 0.2 | 0.05 |
| M | Amherst | 1989 | ${ }^{133} \mathrm{Cs}$ | $1 \cdot 10^{-33} \mathrm{ecm}^{2}$ | - | 1.5 | 0.7 |
| d_{e} | Berkeley | 1990 | Tl | $1 \cdot 10^{-26}$ e cm | - | 0.5 | 0.15 |

