II. CI + MBPT

1. P, Q-decomposition.

$$
\begin{aligned}
& \mathbf{I}=\mathbf{P}+\mathbf{Q} ; \quad \mathbf{P}^{2}=\mathbf{P} ; \quad \mathbf{Q}^{2}=\mathbf{Q} . \\
& \mathbf{H} \Psi=E \mathbf{\Psi} \quad \Longrightarrow \quad\left\{\begin{array}{l}
\mathrm{PHP} \Psi+\mathbf{P H Q} \Psi=E \mathbf{P} \Psi, \\
\mathbf{Q H Q} \Psi+\mathrm{QHP} \Psi=E \mathrm{Q} \Psi
\end{array}\right.
\end{aligned}
$$

The formal solution of the lower equation has the form

$$
\begin{aligned}
& \mathbf{Q} \Psi=\mathbf{R}_{Q}(E)(\mathbf{Q H P}) \mathbf{\Psi} \\
& \mathbf{R}_{Q}(E)=(\mathbf{Q}(E-\mathbf{H}) \mathbf{Q})^{-1} .
\end{aligned}
$$

Substituting it into the upper equation we arrive at:

$$
\left\{\begin{array}{l}
\mathbf{P}(\mathbf{H}+\boldsymbol{\Sigma}(E)) \mathbf{P} \mathbf{\Psi}=E \mathbf{P} \Psi, \\
\boldsymbol{\Sigma}(E)=(\mathbf{P H Q}) \mathbf{R}_{Q}(E)(\mathbf{Q H P}) .
\end{array}\right.
$$

Normalization condition for the solutions of this equation can be approximately written as follows:

$$
\left\langle\mathbf{P} \boldsymbol{\Psi}_{i}\right| \mathbf{1}-\partial_{E} \boldsymbol{\Sigma}(E)\left|\mathbf{P} \boldsymbol{\Psi}_{k}\right\rangle_{E=E_{a v}}=\delta_{i, k},
$$

where it is assumed that that $E_{i} \approx E_{k} \approx E_{a v}$.

2. Main idear of the method:

- Construct operator $\boldsymbol{\Sigma}(E)$ by means of the MBPT.
- Solve the eigenvalue equation in the \mathbf{P}-subspace with the effective Hamiltonian $\mathbf{H}_{\text {eff }}=\mathbf{H}+\boldsymbol{\Sigma}$ using the CI technique.

III. MPBT part

We need to calculate the operator

$$
\boldsymbol{\Sigma}(E)=(\mathbf{P H Q}) \mathbf{R}_{Q}(E)(\mathbf{Q H P})
$$

where \mathbf{P} is a subspace which correspond to the frozen core with the wave function

$$
\begin{aligned}
& \boldsymbol{\Psi}_{c}=\frac{1}{\sqrt{N_{c}!}} \operatorname{det}\left\{\phi_{1} \phi_{2} \cdots \phi_{N_{c}}\right\}, \\
& h_{\mathrm{DF}} \phi_{n}=\varepsilon_{n} \phi_{n} .
\end{aligned}
$$

In the second quantization formalism it can be written as:

$$
\begin{aligned}
& \left|\phi_{n}\right\rangle=a_{n}^{\dagger}|0\rangle \\
& \boldsymbol{\Psi}_{c}=a_{1}^{\dagger} a_{2}^{\dagger} \cdots a_{N_{c}}^{\dagger}|0\rangle
\end{aligned}
$$

Let us define now the many-body Dirac-Fock operator as

$$
\mathbf{H}_{\mathrm{DF}}=\sum_{n} \varepsilon_{n} a_{n}^{\dagger} a_{n}+\text { Const }
$$

and fix the constant from a condition:

$$
\left\langle\boldsymbol{\Psi}_{c}\right| \mathbf{H}_{\mathrm{DF}}\left|\boldsymbol{\Psi}_{c}\right\rangle=\left\langle\mathbf{\Psi}_{c}\right| \mathbf{H}\left|\mathbf{\Psi}_{c}\right\rangle \equiv E_{c} .
$$

Note that such definition of $\mathbf{H}_{\text {DF }}$ means that

$$
\mathbf{H}_{\mathrm{DF}} \boldsymbol{\Psi}_{c}=E_{c} \boldsymbol{\Psi}_{c} .
$$

As far as $\boldsymbol{\Psi}_{c}$ is the eigenfunction of \mathbf{H}_{DF},

$$
\mathbf{P H}_{\mathrm{DF}} \mathbf{Q}=\mathbf{Q H}_{\mathrm{DF}} \mathbf{P}=0 .
$$

Thus

$$
\boldsymbol{\Sigma}(E)=\left(\mathbf{P V}^{\prime} \mathbf{Q}\right) \mathbf{R}_{Q}(E)\left(\mathbf{Q V}^{\prime} \mathbf{P}\right),
$$

where $\mathbf{V}^{\prime} \equiv \mathbf{H}-\mathbf{H}_{\mathrm{DF}}$ is the residual field operator.
Now we can use the usual expansion in \mathbf{V}^{\prime} for the Green's function

$$
\frac{1}{E-\mathbf{H}}=\frac{1}{E-\mathbf{H}_{\mathrm{DF}}}+\frac{1}{E-\mathbf{H}_{\mathrm{DF}}} \mathbf{V}^{\prime} \frac{1}{E-\mathbf{H}}
$$

to form the perturbation series for the operator $\boldsymbol{\Sigma}(E)$.

IV. Expectation Values and Transition Amplitudes

With the help of the effective Hamiltonian $\mathbf{H}_{\text {eff }}=\mathbf{H}+\boldsymbol{\Sigma}(E)$ we can find only the projection $\boldsymbol{\Phi}$ of the wave function $\boldsymbol{\Psi}$:

$$
\left.\begin{array}{l}
\mathbf{\Phi}=\mathbf{P} \boldsymbol{\Psi} \\
\mathbf{Q} \Psi=\mathbf{R}_{Q}(E) \mathbf{V}^{\prime} \mathbf{P} \boldsymbol{\Phi}
\end{array}\right\} \Longrightarrow \boldsymbol{\Psi}=\left(\mathbf{P}+\mathbf{R}_{Q}(E) \mathbf{V}^{\prime} \mathbf{P}\right) \boldsymbol{\Phi}
$$

The amplitude of the arbitrary operator \mathbf{A} can be written as:

$$
A_{2,1}=\left\langle\boldsymbol{\Psi}_{2}\right| \mathbf{A}\left|\boldsymbol{\Psi}_{1}\right\rangle \equiv\left\langle\boldsymbol{\Phi}_{2}\right| \mathbf{A}_{\mathrm{eff}}\left|\boldsymbol{\Phi}_{1}\right\rangle
$$

where

$$
\begin{aligned}
\mathbf{A}_{\text {eff }}= & \mathbf{P A P}+\mathbf{P V}^{\prime} \mathbf{R}_{Q}\left(E_{2}\right) \mathbf{A} \mathbf{P}+\mathbf{P A R}_{Q}\left(E_{1}\right) \mathbf{V}^{\prime} \mathbf{P} \\
& +\mathbf{P V}^{\prime} \mathbf{R}_{Q}\left(E_{2}\right) \mathbf{A R}_{Q}\left(E_{1}\right) \mathbf{V}^{\prime} \mathbf{P} .
\end{aligned}
$$

In this equation we have exact Green's functions $\mathbf{R}_{Q}(E)$. One can show that the following approximate expression holds true:

$$
\mathbf{A}_{\mathrm{eff}} \approx \mathbf{P A P}+\mathbf{P V}^{\prime} \mathbf{R}_{Q}^{\mathrm{DF}}\left(E_{2}\right) \mathbf{A}^{\mathrm{RPA}} \mathbf{P}+\mathbf{P A}^{\mathrm{RPA}} \mathbf{R}_{Q}^{\mathrm{DH}}\left(E_{1}\right) \mathbf{V}^{\prime} \mathbf{P}
$$

where Green's functions are taken in the Dirac-Fock approximation and operator is taken in the Random-Phase approximation.

