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PNC Hamiltonian

HPNC = −GFQW

2
√

2
γ5n(r),

where GF = 2.2225× 10−14 a.u. is the Fermi constant of the
weak interaction, γ5 is the Dirac matrix, and n(r) is the nuclear
density normalized as

∫
n(r)dr = 1. The dimensionless

constants QW is known as the weak charge of the nucleus:

QW = −N + Z (1− 4 sin2 θW) ≈ −N.



PNC in ions He-like ions PNC asymmetry in DR Conclusions

PNC matrix element

Due to the short-range nature of the interaction HPNC it mixes
only one-electron states with j = 1/2, i.e. n1s1/2 and n2p1/2.
For H-like ion:

〈n2p1/2|HPNC|n1s1/2〉 =
−i
√

2 GFα

8π(n1n2)3/2 Z 4R(Z )QW ∼ Z 5R,

where R(Z ) is the relativistic enhancement factor,
R(1) = 1, R(80) ≈ 10.
For neutral atom:

〈n2p1/2|HPNC|n1s1/2〉 =
−i
√

2 GFα

8π(ñ1ñ2)3/2 Z 2R(Z )QW ∼ Z 3R.
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PNC mixing

PNC effects in atoms and ions appear because of the mixing of
the levels of opposite parity. This mixing leads, for example, to
an admixture of a negative-parity state ψ− to a positive-parity
state ψ+ due to the parity nonconserving weak interaction
HPNC, ψ+ + iηψ−, as determined by the first-order perturbation
expression

iη =
〈−|HPNC|+〉

E+ − E− + i
2Γ−

.

When |E+ − E−| � Γ−, coefficient η is real. In neutral atoms
the valence energies are roughly independent of Z , and η
scales as Z 3R. In MCI the level energies E± are proportional to
Z 2 and a typical PNC mixing η again scales as Z 3R.
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Comparison of highly charged ions with atoms

• For ions PNC amplitudes grow faster with Z .
• Energy splittings between levels of opposite parity also

grow with Z .
• Typical PNC mixings grow as Z 3 for both atoms and ions.
• For hydrogen-like ions the levels of opposite parity ns1/2

and np1/2 are anomalously close because of the
“accidental” degeneracy. The splitting, caused by the Lamb
shift, grows rapidly with Z (∼ Z 4).

• For He-like ions the levels of opposite parity can cross at
some Z . That can cause huge additional enhancement of
the PNC mixing (Gorshkov & Labzowski).
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Configurations 1s2s and 1s2p

• The levels 1S0(1s2s) and 3P1(1s2p) cross at Z ≈ 32. This
is a ∆J = 1 crossing and PNC mixing is caused only by
the nuclear-spin-dependent PNC interaction (Gorshkov &
Labzowski, 1974).

• The levels 1S0(1s2s) and 3P0(1s2p) cross at Z ≈ 65 and
Z ≈ 90 (Andreev et al, 2003).

• In both cases the detection schemes for the PNC effects
involve radiative transitions.
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Configurations 2s2, 2p2, and 2s2p

• The energies of the 2l2l ′ states are determined by
diagonalization of the effective Hamiltonian in the
n = 2 subspace.

• The single-electron part of this Hamiltonian includes
hydrogenic Dirac orbital energies and the Lamb shift.

• The two-electron part of the Hamiltonian matrix is
presented as a double expansion in parameters 1/Z
and αZ (Braun, Gurchumelia, & Safronova).

• We use first three terms of this expansion of order Z ,
Z (αZ )2, and Z 0.
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Lamb shift for H-like ions

The Lamb shift is known to be essential for the level crossings
within the 1s2l ′ manifold (Gorshkov & Labzowski). The same is
also true for the 2l2l ′ states.
By factoring out the main dependence on Z and the principal
quantum number n, the Lamb shift for the hydrogenic orbital nlj
is written as

δEnlj =
Z (αZ )3

πn3 Fnlj(αZ ).
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Function Fnlj for H-like ions (Johnson & Soff)
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Function Fnlj for H-like ions (Johnson & Soff)
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Configurations 2s2, 2p2, and 2s2p
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Dielectronic recombination (DR): e + H(1s) → He∗

p ,µ 1
ω

n p ,µ 1
ω

(a) (b)

2 n

DR cross section consists of parity conserving (PC) and PNC
terms, σ = σPC+ σPNC. PNC asymmetry A is defined as:

A =
σ+ − σ−

σ+ + σ−
' σPNC

σPC

∣∣∣∣
µ=1

,

where σ± are the cross sections for positive and negative
helicity, µ ≡ σ · p̂ = ±1.
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PC cross section

Contribution of the resonance k to the PC part of the DR cross
section has the standard Breit-Wigner form:

σPC
k (ε) =

π

4p2

Γ
(r)
k Γ

(a)
k

(E1s + ε− Ek )2 + 1
4Γ2

k

,

where Ek and Γk are the energy and the total width of the
resonance. The latter is the sum of the autoionizing and
radiative widths: Γ = Γ(a) + Γ(r).
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Autoionizing and radiative widths
Radiative width of the (2s2p)0 ≡ (−,0) and (2s2)0 ≡ (+,0)
states in the non-relativistic approximation is given by:

Γ
(r)
−,0 =

(
2
3

)8

α3Z 4 = 1.517× 10−8Z 4,

Γ
(r)
+,0 = 2

(
2
3

)8

α3Z 4
(

1− C2
ss

)
,

where the coefficient Css defines contribution of the
configuration 2s2 to the state |+,0〉.
In the same approximation Γ(r) is independent on Z ,

Γ
(a)
−,0 = 0.0104, Γ

(a)

2s2 = 0.00496.

Note that for Z � 30, Γk ≈ Γ
(r)
k � Γ

(a)
k .
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PNC cross section

Contribution of the resonance k to the PNC part of the DR
cross section takes the form:

σPNC
k (ε) = (σ · p̂)σPC

k

√√√√Γ
(a)
i

Γ
(a)
k

×<

{
ei(δk−δi )

2i〈k |HPNC|i〉
E1s + ε− Ei + i

2Γi

}
,

where δi and δk are the Coulomb scattering phases.
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PC & PNC DR cross sections for Z = 30, 40
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PC & PNC DR cross sections for Z = 48, 60
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PNC measurement feasibility functions

Let us estimate the sensitivity requirements for an experimental
apparatus capable of observing the PNC asymmetry. The
number of counts in an experiment with a fully polarized
electron beam with positive helicity is given by:

N± = jeNi tεσ± ≡ Iσ±,

where je is the electron flux, Ni is the number of target ions, t is
the acquisition time, and ε is the detection efficiency.
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Monoenergetic electron beam

For a beam or target with polarization P, to detect the PNC
asymmetry, the difference between the counts, P|N+ − N−|
should be greater than statistical error,

√
N+ + N−, which gives:

I(ε) >
σ+(ε) + σ−(ε)

P2[σ+(ε)− σ−(ε)]2
,

For P = 1 the feasibility of the experiment on ions with nuclear
charge Z depends on the functions:

F (Z ) = minε

{
σ+(ε) + σ−(ε)

[σ+(ε)− σ−(ε)]2

}
.
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The beam with wide energy distribution

If the electron energy spread in the beam is greater than the
resonance spacing and widths, then the flux je should be
replaced by the flux density dje/dε. The counts N± are
obtained by integrating over the electron energy and the effect
can be detected if

Iav >

∫
(σ+ + σ−)dε

[∫
(σ+ − σ−)dε

]−2

.

Obviously, now the feasibility depends on the function:

Fav(Z ) =

∫
(σ+ + σ−)dε

[∫
(σ+ − σ−)dε

]−2

.
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The resonance strength

If we introduce the resonance strength:

Sk =

∫
σPC

k dε =
π2

2p2

Γ
(r)
k Γ

(a)
k

Γk
,

and the PNC strength:

SPNC
1,2 ≡

2∑
k=1

∫
σPNC

k

∣∣
σ·p̂=1 dε,

we can present the feasibility function in a form:

Fav(Z ) = 1
2(S1 + S2)/

(
SPNC

1,2
)2
.
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Meaning of the functions F and Fav

F (Z ) = minε

{
σ+(ε) + σ−(ε)

[σ+(ε)− σ−(ε)]2

}
.

Fav(Z ) = 1
2(S1 + S2)/

(
SPNC

1,2
)2
.

• Note that F−1 and F−1
av have the same dimensions as a

cross section and a resonance strength respectively.
• For an experiment to be able to observe predicted PNC

effect in KLL dielectronic recombination resonances, it
would have to be able to detect a cross section as small as
F−1 or a resonance strength as small as F−1

av .
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PNC measurement feasibility functions
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Proposed PNC experiments in MCI
• PNC effect in the Auger emission from the He-like

uranium (Pinzola, 1993). PNC asymmetry ∼ 10−7 is
caused by the mixing of the states (2s2)0 and (2s2p)0 with
J = 0. That estimate neglected the radiative widths of the
levels, which for Z & 50 exceed the level spacing.

• PNC asymmetries in radiative transitions in He-like
uranium. Schafer et al. considered two-photon E1-M1
transition 2 3Po

0 → 2 1S0, separated by 1 eV. Here PNC
mixing is |η| ∼ 5× 10−6, but one needs laser intensity
above 1021 W/cm2 to observe this transition.

• PNC asymmetry of the photon angular distribution in
He-like gadolinium. The asymmetry for the
hyperfine-quenched transitions 2 1S0 → 1 1S0 is 4× 10−4.
Although this value is large, the number of events
necessary to measure the effect is ∼ 1018 (Nefedov et al.
(2002)).
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Comparison of different proposals

Typical PNC experiments with MCI require:
• Spin-polarization of the ions.
• Observation of the (highly) forbidden transitions.
• Observation of the circular polarization of γ-quanta.

In our proposal:
• Spin-polarization of either ions, or electrons is required.
• Observation of a normal, rather then weak DR resonance.
• The PNC asymmetry does not include γ-quanta.

All proposals to observe PNC effects in MCI are experimentally
challenging.
Observation of PNC effects in MCI will give a theoretically clean
test of the Standard Model at low energies and in the strong
electric fields.
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