He-like ions

PNC asymmetry in DR

Conclusions

Parity non-conservation with multiply charged ions

Mikhail Kozlov

Petersburg Nuclear Physics Institute Neutron Research Division

・ロット (雪) ・ (日) ・ (日)

Shanghai, June 2006

э

He-like ions

PNC asymmetry in DR

Conclusions

Plan of the talk

Parity non-conservation in ions Comparison with atoms

Energy levels of He-like ions Close levels of opposite parity

PNC asymmetry in dielectronic recombination cross section ${}^{1}S_{0}(2s^{2})$ and ${}^{3}P_{0}(2s2p)$ resonances Feasibility analysis

Conclusions

Comparison with other MCI proposals

He-like ions

PNC asymmetry in DR

Conclusions

Parity non-conservation in ions Comparison with atoms

Energy levels of He-like ions Close levels of opposite parity

PNC asymmetry in dielectronic recombination cross section ${}^{1}S_{0}(2s^{2})$ and ${}^{3}P_{0}(2s2p)$ resonances Feasibility analysis

Conclusions Comparison with other MCI proposals

He-like ions

PNC asymmetry in DR

Conclusions

PNC Hamiltonian

$$\mathcal{H}^{\mathrm{PNC}} = -rac{G_{\mathrm{F}}Q_{\mathrm{W}}}{2\sqrt{2}}\gamma_5 n(\mathbf{r}),$$

where $G_{\rm F} = 2.2225 \times 10^{-14}$ a.u. is the Fermi constant of the weak interaction, γ_5 is the Dirac matrix, and $n(\mathbf{r})$ is the nuclear density normalized as $\int n(\mathbf{r})d\mathbf{r} = 1$. The dimensionless constants $Q_{\rm W}$ is known as the weak charge of the nucleus:

$$Q_{\mathrm{W}} = -N + Z(1 - 4\sin^2 heta_{\mathrm{W}}) pprox -N.$$

He-like ions

PNC asymmetry in DR

Conclusions

PNC matrix element

Due to the short-range nature of the interaction H^{PNC} it mixes only one-electron states with j = 1/2, i.e. $n_1 s_{1/2}$ and $n_2 p_{1/2}$. For H-like ion:

$$\langle n_2 p_{1/2} | H^{\text{PNC}} | n_1 s_{1/2} \rangle = \frac{-i\sqrt{2} G_{\text{F}} \alpha}{8\pi (n_1 n_2)^{3/2}} Z^4 R(Z) Q_W \sim Z^5 R_2$$

where R(Z) is the relativistic enhancement factor, R(1) = 1, $R(80) \approx 10$. For neutral atom:

$$\langle n_2 p_{1/2} | H^{\text{PNC}} | n_1 s_{1/2}
angle = rac{-i\sqrt{2} G_{\text{F}} lpha}{8\pi (\tilde{n}_1 \tilde{n}_2)^{3/2}} Z^2 R(Z) Q_W \sim Z^3 R.$$

He-like ions

PNC asymmetry in DR

Conclusions

PNC matrix element

Due to the short-range nature of the interaction H^{PNC} it mixes only one-electron states with j = 1/2, i.e. $n_1 s_{1/2}$ and $n_2 p_{1/2}$. For H-like ion:

$$\langle n_2 p_{1/2} | H^{\text{PNC}} | n_1 s_{1/2} \rangle = \frac{-i\sqrt{2} G_{\text{F}} \alpha}{8\pi (n_1 n_2)^{3/2}} Z^4 R(Z) Q_W \sim Z^5 R,$$

where R(Z) is the relativistic enhancement factor, R(1) = 1, $R(80) \approx 10$. For neutral atom:

$$\langle n_2 p_{1/2} | H^{\text{PNC}} | n_1 s_{1/2} \rangle = rac{-i\sqrt{2} G_{\text{F}} \alpha}{8\pi (\tilde{n}_1 \tilde{n}_2)^{3/2}} Z^2 R(Z) Q_W \sim Z^3 R.$$

He-like ions

PNC asymmetry in DR

Conclusions

PNC matrix element

Due to the short-range nature of the interaction H^{PNC} it mixes only one-electron states with j = 1/2, i.e. $n_1 s_{1/2}$ and $n_2 p_{1/2}$. For H-like ion:

$$\langle n_2 p_{1/2} | H^{\text{PNC}} | n_1 s_{1/2} \rangle = \frac{-i\sqrt{2} G_{\text{F}} \alpha}{8\pi (n_1 n_2)^{3/2}} Z^4 R(Z) Q_W \sim Z^5 R,$$

where R(Z) is the relativistic enhancement factor, R(1) = 1, $R(80) \approx 10$. For neutral atom:

$$\langle n_2 p_{1/2} | \mathcal{H}^{\text{PNC}} | n_1 s_{1/2} \rangle = rac{-i\sqrt{2} G_{\text{F}} \alpha}{8\pi (\tilde{n}_1 \tilde{n}_2)^{3/2}} Z^2 R(Z) Q_W \sim Z^3 R.$$

He-like ions

PNC asymmetry in DR

Conclusions

PNC mixing

PNC effects in atoms and ions appear because of the mixing of the levels of opposite parity. This mixing leads, for example, to an admixture of a negative-parity state ψ_{-} to a positive-parity state ψ_{+} due to the parity nonconserving weak interaction $H^{\rm PNC}$, $\psi_{+} + i\eta\psi_{-}$, as determined by the first-order perturbation expression

$$i\eta = rac{\langle -|m{H}^{ extsf{PNC}}|+
angle}{m{E}_+ - m{E}_- + rac{i}{2}\Gamma_-}$$

When $|E_+ - E_-| \gg \Gamma_-$, coefficient η is real. In neutral atoms the valence energies are roughly independent of *Z*, and η scales as Z^3R . In MCI the level energies E_{\pm} are proportional to Z^2 and a typical PNC mixing η again scales as Z^3R .

Comparison of highly charged ions with atoms

- For ions PNC amplitudes grow faster with Z.
- Energy splittings between levels of opposite parity also grow with *Z*.
- Typical PNC mixings grow as Z^3 for both atoms and ions.
- For hydrogen-like ions the levels of opposite parity $ns_{1/2}$ and $np_{1/2}$ are anomalously close because of the "accidental" degeneracy. The splitting, caused by the Lamb shift, grows rapidly with $Z (\sim Z^4)$.
- For He-like ions the levels of opposite parity can cross at some Z. That can cause huge additional enhancement of the PNC mixing (Gorshkov & Labzowski).

Comparison of highly charged ions with atoms

- For ions PNC amplitudes grow faster with Z.
- Energy splittings between levels of opposite parity also grow with *Z*.
- Typical PNC mixings grow as Z^3 for both atoms and ions.
- For hydrogen-like ions the levels of opposite parity $ns_{1/2}$ and $np_{1/2}$ are anomalously close because of the "accidental" degeneracy. The splitting, caused by the Lamb shift, grows rapidly with $Z (\sim Z^4)$.
- For He-like ions the levels of opposite parity can cross at some Z. That can cause huge additional enhancement of the PNC mixing (Gorshkov & Labzowski).

He-like ions

PNC asymmetry in DR

Conclusions

Outline

Parity non-conservation in ions Comparison with atoms

Energy levels of He-like ions Close levels of opposite parity

PNC asymmetry in dielectronic recombination cross section ${}^{1}S_{0}(2s^{2})$ and ${}^{3}P_{0}(2s2p)$ resonances Feasibility analysis

Conclusions Comparison with other MCI proposals

Conclusions

Configurations 1s2s and 1s2p

- The levels ${}^{1}S_{0}(1s2s)$ and ${}^{3}P_{1}(1s2p)$ cross at $Z \approx 32$. This is a $\Delta J = 1$ crossing and PNC mixing is caused only by the nuclear-spin-dependent PNC interaction (Gorshkov & Labzowski, 1974).
- The levels ${}^{1}S_{0}(1s2s)$ and ${}^{3}P_{0}(1s2p)$ cross at $Z \approx 65$ and $Z \approx 90$ (Andreev et al, 2003).
- In both cases the detection schemes for the PNC effects involve radiative transitions.

Configurations 1s2s and 1s2p

- The levels ${}^{1}S_{0}(1s2s)$ and ${}^{3}P_{1}(1s2p)$ cross at $Z \approx 32$. This is a $\Delta J = 1$ crossing and PNC mixing is caused only by the nuclear-spin-dependent PNC interaction (Gorshkov & Labzowski, 1974).
- The levels ${}^{1}S_{0}(1s2s)$ and ${}^{3}P_{0}(1s2p)$ cross at $Z \approx 65$ and $Z \approx 90$ (Andreev et al, 2003).
- In both cases the detection schemes for the PNC effects involve radiative transitions.

Conclusions

Configurations $2s^2$, $2p^2$, and 2s2p

- The energies of the 2/2/' states are determined by diagonalization of the effective Hamiltonian in the n = 2 subspace.
- The single-electron part of this Hamiltonian includes hydrogenic Dirac orbital energies and the Lamb shift.
- The two-electron part of the Hamiltonian matrix is presented as a double expansion in parameters 1/Z and αZ (Braun, Gurchumelia, & Safronova).
- We use first three terms of this expansion of order Z, $Z(\alpha Z)^2$, and Z^0 .

He-like ions

PNC asymmetry in DR

Conclusions

Lamb shift for H-like ions

The Lamb shift is known to be essential for the level crossings within the 1s2l' manifold (Gorshkov & Labzowski). The same is also true for the 2l2l' states.

By factoring out the main dependence on Z and the principal quantum number n, the Lamb shift for the hydrogenic orbital nlj is written as

$$\delta E_{nlj} = \frac{Z(\alpha Z)^3}{\pi n^3} F_{nlj}(\alpha Z).$$

He-like ions

PNC asymmetry in DR

Conclusions

Parity non-conservation in ions Comparison with atoms

Energy levels of He-like ions Close levels of opposite parity

PNC asymmetry in dielectronic recombination cross section ${}^{1}S_{0}(2s^{2})$ and ${}^{3}P_{0}(2s2p)$ resonances Feasibility analysis

Conclusions Comparison with other MCI proposals

DR cross section consists of parity conserving (PC) and PNC terms, $\sigma = \sigma^{\text{PC}} + \sigma^{\text{PNC}}$. PNC asymmetry \mathcal{A} is defined as:

$$\mathcal{A} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} \simeq \left. \frac{\sigma^{\text{PNC}}}{\sigma^{\text{PC}}} \right|_{\mu=1}$$

where σ^{\pm} are the cross sections for positive and negative helicity, $\mu \equiv \boldsymbol{\sigma} \cdot \hat{\boldsymbol{p}} = \pm 1$.

He-like ions

PNC asymmetry in DR

Conclusions

PC cross section

Contribution of the resonance k to the PC part of the DR cross section has the standard Breit-Wigner form:

$$\sigma_k^{\rm PC}(\varepsilon) = \frac{\pi}{4\rho^2} \frac{\Gamma_k^{(r)} \Gamma_k^{(a)}}{\left(E_{1s} + \varepsilon - E_k\right)^2 + \frac{1}{4} \Gamma_k^2},$$

where E_k and Γ_k are the energy and the total width of the resonance. The latter is the sum of the autoionizing and radiative widths: $\Gamma = \Gamma^{(a)} + \Gamma^{(r)}$.

He-like ions

PNC asymmetry in DR

Conclusions

Autoionizing and radiative widths

Radiative width of the $(2s2p)_0 \equiv (-,0)$ and $(2s^2)_0 \equiv (+,0)$ states in the non-relativistic approximation is given by:

$$\Gamma_{-,0}^{(r)} = \left(rac{2}{3}
ight)^8 lpha^3 Z^4 = 1.517 imes 10^{-8} Z^4,$$

$$\Gamma_{+,0}^{(r)} = 2\left(\frac{2}{3}\right)^8 \alpha^3 Z^4 \left(1 - C_{ss}^2\right),$$

where the coefficient C_{ss} defines contribution of the configuration $2s^2$ to the state $|+,0\rangle$. In the same approximation $\Gamma^{(r)}$ is independent on Z,

$$\Gamma^{(a)}_{-,0} = 0.0104, \quad \Gamma^{(a)}_{2s^2} = 0.00496.$$

Note that for $Z \gg 30$, $\Gamma_k \approx \Gamma_k^{(r)} \gg \Gamma_k^{(a)}$.

He-like ions

PNC asymmetry in DR

Conclusions

PNC cross section

Contribution of the resonance k to the PNC part of the DR cross section takes the form:

$$\sigma_{k}^{\text{PNC}}(\varepsilon) = (\boldsymbol{\sigma} \cdot \hat{\boldsymbol{p}}) \sigma_{k}^{\text{PC}} \sqrt{\frac{\Gamma_{i}^{(a)}}{\Gamma_{k}^{(a)}}} \times \Re \left\{ \boldsymbol{e}^{i(\delta_{k} - \delta_{i})} \frac{2i\langle k | \mathcal{H}^{\text{PNC}} | i \rangle}{E_{1s} + \varepsilon - E_{i} + \frac{i}{2} \Gamma_{i}} \right\},$$

where δ_i and δ_k are the Coulomb scattering phases.

He-like ions

PNC asymmetry in DR

Conclusions

PC & PNC DR cross sections for Z = 30, 40

э

(日)

He-like ions

PNC asymmetry in DR

Conclusions

PC & PNC DR cross sections for Z = 48,60

э

・ロット (雪) (日) (日)

He-like ions

PNC asymmetry in DR

Conclusions

Parity non-conservation in ions Comparison with atoms

Energy levels of He-like ions Close levels of opposite parity

PNC asymmetry in dielectronic recombination cross section ${}^{1}S_{0}(2s^{2})$ and ${}^{3}P_{0}(2s2p)$ resonances Feasibility analysis

Conclusions Comparison with other MCI proposals

Conclusions

PNC measurement feasibility functions

Let us estimate the sensitivity requirements for an experimental apparatus capable of observing the PNC asymmetry. The number of counts in an experiment with a fully polarized electron beam with positive helicity is given by:

$$N_{\pm} = j_e N_i t \epsilon \sigma^{\pm} \equiv I \sigma^{\pm},$$

where j_e is the electron flux, N_i is the number of target ions, t is the acquisition time, and ϵ is the detection efficiency.

He-like ions

PNC asymmetry in DR

Conclusions

Monoenergetic electron beam

For a beam or target with polarization *P*, to detect the PNC asymmetry, the difference between the counts, $P|N_+ - N_-|$ should be greater than statistical error, $\sqrt{N_+ + N_-}$, which gives:

$$I(\varepsilon) > \frac{\sigma^+(\varepsilon) + \sigma^-(\varepsilon)}{P^2[\sigma^+(\varepsilon) - \sigma^-(\varepsilon)]^2},$$

For P = 1 the feasibility of the experiment on ions with nuclear charge Z depends on the functions:

$$F(Z) = \min_{\varepsilon} \left\{ \frac{\sigma^+(\varepsilon) + \sigma^-(\varepsilon)}{[\sigma^+(\varepsilon) - \sigma^-(\varepsilon)]^2} \right\}.$$

Conclusions

▲□▶ ▲圖▶ ▲필▶ ▲필▶ ■

The beam with wide energy distribution

If the electron energy spread in the beam is greater than the resonance spacing and widths, then the flux j_e should be replaced by the flux density $dj_e/d\varepsilon$. The counts N_{\pm} are obtained by integrating over the electron energy and the effect can be detected if

$$J_{
m av} > \int (\sigma^+ + \sigma^-) darepsilon \left[\int (\sigma^+ - \sigma^-) darepsilon
ight]^{-2} darepsilon$$

Obviously, now the feasibility depends on the function:

$$F_{\mathrm{av}}(Z) = \int (\sigma^+ + \sigma^-) d\varepsilon \left[\int (\sigma^+ - \sigma^-) d\varepsilon \right]^{-2}$$

He-like ions

PNC asymmetry in DR

Conclusions

The resonance strength

If we introduce the resonance strength:

$$S_k = \int \sigma_k^{\mathrm{PC}} d\varepsilon = rac{\pi^2}{2p^2} rac{\Gamma_k^{(r)} \Gamma_k^{(a)}}{\Gamma_k},$$

and the PNC strength:

$$S_{1,2}^{\text{PNC}} \equiv \sum_{k=1}^{2} \int \sigma_{k}^{\text{PNC}} \big|_{\boldsymbol{\sigma} \cdot \hat{\boldsymbol{p}} = 1} d\varepsilon,$$

we can present the feasibility function in a form:

$$F_{\rm av}(Z) = rac{1}{2}(S_1 + S_2)/(S_{1,2}^{\rm PNC})^2$$

ヘロン 人間 とくほど 人ほど 一日

He-like ions

PNC asymmetry in DR

Conclusions

Meaning of the functions F and F_{av}

$$F(Z) = \min_{\varepsilon} \left\{ \frac{\sigma^{+}(\varepsilon) + \sigma^{-}(\varepsilon)}{[\sigma^{+}(\varepsilon) - \sigma^{-}(\varepsilon)]^{2}} \right\}.$$
$$F_{\mathrm{av}}(Z) = \frac{1}{2}(S_{1} + S_{2}) / (S_{1,2}^{\mathrm{PNC}})^{2}.$$

- Note that F^{-1} and F^{-1}_{av} have the same dimensions as a cross section and a resonance strength respectively.
- For an experiment to be able to observe predicted PNC effect in KLL dielectronic recombination resonances, it would have to be able to detect a cross section as small as F^{-1} or a resonance strength as small as F_{av}^{-1} .

He-like ions

PNC asymmetry in DR

Conclusions

PNC measurement feasibility functions

æ

ヘロト ヘ回ト ヘヨト ヘヨト

He-like ions

PNC asymmetry in DR

Conclusions • 0 0 0

Parity non-conservation in ions Comparison with atoms

Energy levels of He-like ions Close levels of opposite parity

PNC asymmetry in dielectronic recombination cross section ${}^{1}S_{0}(2s^{2})$ and ${}^{3}P_{0}(2s2p)$ resonances Feasibility analysis

Conclusions Comparison with other MCI proposals

Proposed PNC experiments in MCI

- PNC effect in the Auger emission from the He-like uranium (Pinzola, 1993). PNC asymmetry $\sim 10^{-7}$ is caused by the mixing of the states $(2s^2)_0$ and $(2s2p)_0$ with J = 0. That estimate neglected the radiative widths of the levels, which for $Z \gtrsim 50$ exceed the level spacing.
- PNC asymmetries in radiative transitions in He-like
- PNC asymmetry of the photon angular distribution in He-like gadolinium. The asymmetry for the

Proposed PNC experiments in MCI

- PNC effect in the Auger emission from the He-like uranium (Pinzola, 1993). PNC asymmetry $\sim 10^{-7}$ is caused by the mixing of the states $(2s^2)_0$ and $(2s2p)_0$ with J = 0. That estimate neglected the radiative widths of the levels, which for $Z \gtrsim 50$ exceed the level spacing.
- PNC asymmetries in radiative transitions in He-like uranium. Schafer et al. considered two-photon E1-M1 transition $2 {}^{3}P_{0}^{o} \rightarrow 2 {}^{1}S_{0}$, separated by 1 eV. Here PNC mixing is $|\eta| \sim 5 \times 10^{-6}$, but one needs laser intensity above 10²¹ W/cm² to observe this transition.
- PNC asymmetry of the photon angular distribution in

Proposed PNC experiments in MCI

- PNC effect in the Auger emission from the He-like uranium (Pinzola, 1993). PNC asymmetry $\sim 10^{-7}$ is caused by the mixing of the states $(2s^2)_0$ and $(2s2p)_0$ with J = 0. That estimate neglected the radiative widths of the levels, which for $Z \gtrsim 50$ exceed the level spacing.
- PNC asymmetries in radiative transitions in He-like uranium. Schafer et al. considered two-photon E1-M1 transition $2 {}^{3}P_{0}^{o} \rightarrow 2 {}^{1}S_{0}$, separated by 1 eV. Here PNC mixing is $|\eta| \sim 5 \times 10^{-6}$, but one needs laser intensity above 10^{21} W/cm² to observe this transition.
- PNC asymmetry of the photon angular distribution in He-like gadolinium. The asymmetry for the hyperfine-quenched transitions 2 ${}^{1}S_{0} \rightarrow 1 {}^{1}S_{0}$ is 4 × 10⁻⁴. Although this value is large, the number of events necessary to measure the effect is $\sim 10^{18}$ (Nefedov et al. (2002)).

Conclusions

Comparison of different proposals

Typical PNC experiments with MCI require:

- Spin-polarization of the ions.
- Observation of the (highly) forbidden transitions.
- Observation of the circular polarization of γ -quanta.

In our proposal:

- Spin-polarization of either ions, or electrons is required.
- Observation of a normal, rather then weak DR resonance.
- The PNC asymmetry does not include γ -quanta.

All proposals to observe PNC effects in MCI are experimentally challenging.

Observation of PNC effects in MCI will give a theoretically clean test of the Standard Model at low energies and in the strong electric fields.

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Conclusions

Comparison of different proposals

Typical PNC experiments with MCI require:

- Spin-polarization of the ions.
- Observation of the (highly) forbidden transitions.
- Observation of the circular polarization of γ -quanta.

In our proposal:

- Spin-polarization of either ions, or electrons is required.
- Observation of a normal, rather then weak DR resonance.
- The PNC asymmetry does not include γ -quanta.

All proposals to observe PNC effects in MCI are experimentally challenging.

Observation of PNC effects in MCI will give a theoretically clean test of the Standard Model at low energies and in the strong electric fields.

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Conclusions

Comparison of different proposals

Typical PNC experiments with MCI require:

- Spin-polarization of the ions.
- Observation of the (highly) forbidden transitions.
- Observation of the circular polarization of γ -quanta.

In our proposal:

- Spin-polarization of either ions, or electrons is required.
- Observation of a normal, rather then weak DR resonance.
- The PNC asymmetry does not include γ -quanta.

All proposals to observe PNC effects in MCI are experimentally challenging.

Observation of PNC effects in MCI will give a theoretically clean test of the Standard Model at low energies and in the strong electric fields.

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

He-like ions

PNC asymmetry in DR

Conclusions

Acknowledgments

Collaborators:

- Gleb Gribakin
 (Queen's University at Belfast)
- Fred Currel (Queen's University at Belfast)
- Alexander I Mikhailov
 (Petersburg Nuclear Physics Institute)

Grants:

- Grant from Russian Foundation for Basic Research
- Fellowship from International Research Center for Experimental Physics at Queen's University of Belfast.

He-like ions

PNC asymmetry in DR

Conclusions

Acknowledgments

Collaborators:

- Gleb Gribakin
 (Queen's University at Belfast)
- Fred Currel (Queen's University at Belfast)
- Alexander I Mikhailov
 (Petersburg Nuclear Physics Institute)

Grants:

- Grant from Russian Foundation for Basic Research
- Fellowship from International Research Center for Experimental Physics at Queen's University of Belfast.

