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• Why do we still need to develop atomic

theory?

• Theory of atoms with several valence elec-

trons.

• Tests of the theory (spectra, expectation

values, transition amplitudes).

• Parity non-conservation (PNC) in atoms

and tests of the standard model.

• Anapole moments of the nuclei and weak

nuclear forces.

• Search for the time-variation of the funda-

mental constants.
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What limits the accuracy of atomic theory?

• Typical atom (ion) is a many-electron sys-

tem with several electrons in open shells.

• Correlation corrections to the transition fre-

quences and allowed E1-transition ampli-

tudes are typically ∼10%; for the hyperfine

structure (HFS) and PNC interactions —

∼30%.

• QED corrections to the frequences are ∼0.1%

and ∼1% for the PNC amplitudes and for

HFS.

• Nuclear charge radii are known to a one

percent accuracy; magnetic moment de-

stributions (for HFS) and neutron destri-

butions (for PNC) are known to a few per-

cent accuracy.

2



What accuracy of the theory we need?

• Atomic frequences are known from the ex-

periment to 7-9 digits; sometimes – upto

12-15 digits. For systems like H and He the

theory is competitive. That is why QED is

the best tested theory. For a typical atom

the theory gives 1-0.1% accuracy at best.

• We need theory to extract nuclear charge
radii, magnetic, quadrupole, and anapole

moments from the spectroscopic experi-

ments. Therefore, the accuracy to which

we know these characteristisc is often lim-

ited by atomic theory.

• PNC effects in heavy atoms are of the size

of 10−8 – 10−5 and are known from the

experiment with the accuracy of 1 – 0.3%.

Theoretical accuracy is 3 – 0.5%. That

allows to test standard model on the level
of radiative corrections.
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Method of effective operators for valence

electrons (CI+MBPT)

In quantum mechanics the many-electron sys-

tem is described by the following equations:

spectrum : HΨn = EnΨn,
observables : Am,n = 〈Ψm|A|Ψn〉,

(1)

where H is all-electron Hamiltonian and Ψ is

all-electron wave function.

Instead of solving (1) we use many-body per-

turbation theory (MBPT) to form effective op-

erators for valence electrons and use configu-

ration-interaction (CI) to solve the valence equa-

tion:

Heff(En)Φn = EnΦn,
Am,n = 〈Φm|Aeff |Φn〉.

(2)
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CI+MBPT formalism

We devide all-electron space into valence sub-

space and complimentary subspace and intro-

duce corresponding projectors P and Q = 1−P .

All-electron Schrödinger equation is equivalent

to the system:

Ψ = PΨ + QΨ ≡ Φ + χ,

Heff(E)Φ = EΦ,

where

Heff(E) ≡ PHP + Σ(E),

Σ(E) ≡ PHQ RQ(E)QHP,

RQ(E) ≡ (E − QHQ)−1 .
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Linked diagrams for self-energy operator Σ
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E1PNC amplitude for 6p1/2 → 6p3/2 transition

in 205Tl (i · 10−10(−Qw/N) a.u.).

CI −6.408
Heff & RPA −0.725
Aσ +0.241
Asbt +0.180
Atp −0.082
SR −0.006
Subtotal −6.81
Normalization +0.14
Total −6.67

M1 amplitude (10−3 a.u.)

CI+MBPT-II 4.145
MBPT-III(1e) 4.149

R = 108 × Im
E1PNC

1

M11
(

Qw = QSM
w = −116.8

)

−15.2(4)
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Experimental and theoretical values of

R = 108 × ImE1PNC
M1 for 6p1/2 → 6p3/2

transition in 205Tl

Experiment

Oxford Edwards et al (1995) −15.68 (45)
Majumder & Tsai (1999)1 −15.00 (45)

Seattle Vetter et al (1995) −14.68 (17)

Theory2

(Standard model value QW = −116.8 assumed)

Novosibirsk Dzuba et al (1987) −15.0 (5)
Notre Dame Liu et al (1996) −16.0 (10)
Gatchina Kozlov et al (1997) −14.9 (6)
Gatchina-ND Kozlov et al (2001) −15.1 (4)

1 scaling of Oxford result
2 includes QED radiative correction (-0.7)%
(Kuchiev & Flambaum (02);
Milstein, Sushkov, & Terekhov (02))
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Astrophysical search for α-variation

Suppose that the fine structure constant α can

vary in space-time. Then, for a distant quasar

all atomic frequences will be shifted:

ωi = ωi,0 + qix + . . . ,

x ≡ (α/α0)
2 − 1,

where α0 = 1/137 . . . and ωi,0 are the labora-

tory values.

The light from the distant objects is red-shifted

because of the expansion of the Universe. We

can exclude cosmological red shift by taking

the ratios of the frequences:

ωi

ωk
=

(

ωi

ωk

)

0

(

1 +

(

qiωk − qkωi

ωiωk

)

0

x

)

.

In this way, recent observations for the quasars

at distances of ∼ 1010 light years gave (Murphy

et al (2003)):

∆α

α
= (−0.57 ± 0.11) × 10−5.
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Atomic calculations of q and mass shift (MS)

To find qi we make a fully relativistic calcula-

tion of atomic frequences for small, but non-

zero values of x = (α/α0)
2 − 1:

qi ≈ 4 (ωi(x = 1/8) − ωi(x = −1/8)) .

The main systematcs can be caused by the

possible evolution of the natural abundances.

If the nuclear mass is changed by δM , the

atomic frequency is changed too:

ωi = ωi,0 + ki,MS
δM

M2
.

There are two contributions to kMS. Normal

mass shift is caused by the substitution of the

electron mass m with the reduced mass µ =

mM/(m + M).
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Specific mass shift (SMS) is described by the

two-electron operator:

HSMS =
1

M

∑

i>k

~pi · ~pk,

where ~pi is the momentum of the electron i

and M is nuclear mass.

HSMS is added to the many-electron Hamilto-

nian:

Hλ = H0 + λ M HSMS.

The eigenvalue problem for this Hamiltonian is

solved for +λ and for −λ. Then, kSMS is given

by:

kSMS ≈
E+λ − E−λ

2λ
.
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Coefficients q and kMS for ions used in astro-
physical search for α-variation

Ion Transition ω0 q kMS

cm−1 cm−1 GHz · amu
Si II 2P o

1/2 → 2D3/2 55309 520(30) 1900(300)

→ 2S1/2 65500 50(30) −400(500)

Ti II 4F3/2 → 4F o
3/2 30836 530(50) 610(30)

→ 4F o
5/2

30959 660(70) 610(30)

Cr II 6S5/2 → 6P o
3/2 48399 −1360(150) −1900(900)

→ 6P o
5/2 48491 −1280(150) −1900(900)

→ 6P o
7/2 48632 −1110(150) −1900(900)

Fe II 6D9/2 → 6Do
9/2 38459 1330(150) 1800(400)

→ 6Do
7/2 38660 1490(150) 1800(400)

→ 6F o
11/2 41968 1460(150) 1900(400)

→ 6F o
9/2 42115 1590(150) 1900(400)

→ 6P o
7/2 42658 1210(150) 1800(400)

→ 4F o
7/2 62066 1100(300) 2000(1000)

→ 6P o
7/2

62172 −1300(300) −2000(1000)

Ni II 2D5/2 → 2F o
7/2 57080 −700(250) −2300(1000)

→ 2Do
5/2 57420 −1400(250) −2300(1000)

→ 2F o
5/2 58493 −20(250) −2300(1000)

Zn II 2S1/2 → 2P o
1/2 48481 1584(25) 2110(70)

→ 2P o
3/2 49355 2490(25) 2080(70)
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How to eliminate MS effect in α-variation search?

Consider two transitions of the same element:

ωi = ωi,0 + qix + ki
δM

M2
,

ωj = ωj,0 + qjx + kj
δM

M2
,

If we know coefficients k accurately, we can

eliminate M-dependance by taking the combi-

nation:

kjωi − kiωj = (kjωi − kiωj)0

+ (kjqi − kiqj)x.

High precision atomic calculations are neces-

sary!
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