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Fundamental constants in atomic physics

There are three fundamental constants, which influence atomic and
molecular spectra:

Fine structure constant α = e2/(~c) is a coupling constant in QED.
Electron to proton mass ratio µ = me/mp. Because mp is
proportional to ΛQCD, µ ∼ me/ΛQCD.
Nuclear gyromagnetic ratio gn can be expressed in terms of ΛQCD
and quark masses, but for atomic physics gn is independent
constant (always enters in combination gnµ).
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Dimensionless sensitivity coefficients
If fundamental constants change, the frequency of any atomic
transition also change:

ω = ω0

[
1 + Qα

δα

α
+ Qµ

δµ

µ
+ Qg

δgn

gn

]
,

δω

ω
=

δF
F
, F = αQαµQµgQg

n .

In order to detect this change we need to compare at least two
transition frequencies:

ωi

ωk
=

(
ωi

ωk

)
0

[
1 +

δΦ

Φ

]
, Φ = α∆Qαµ∆Qµg∆Qg

n .

Clearly, the effect is proportional to the differences of sensitivity
coefficients ∆Q.
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Sensitivity coefficients for different wavebands (in a.u.)

For optical transitions in light atoms and molecules
Qα,Qµ,Qg � 1.
Fine structure ∼ α2 ⇒ Qα = 2.
Vibrational structure Qµ = 1

2 .
Rotational structure Qµ = 1.
Magnetic hyperfine structure Qα = 2; Qµ = 1; Qg = 1.
Inversion line in NH3 (1.2 cm) Qµ = 4.46.
Mixed inversion-rotational lines in H3O+ |Qµ| ∼ 10.
Λ-doublet lines in OH, CH, NH+,. . . |Qα|, |Qµ| � 1.
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Inversion line in NH3
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Analytical solution [Landau & Lifshitz]

WKB approximation for tunneling frequency reads:

ωinv =
ωv

π
exp (−S)

=
ωv

π
exp

(
−1

~

∫ a

−a

√
2M1(U(x)− E)dx

)
,

δωinv

ωinv
≈ δµ

µ

(
1
2

+
S
2

+
S
4

ωv

Umax − E

)
.
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Sensitivity coefficients Qµ for inversion transition in
different isotopologues of ammonia.

Molecule Action S Qµ
14NH3 5.9 4.4
15NH3 6.0 4.4
14NH2D 6.5 4.7
14ND2H 7.3 5.1
14ND3 8.4 5.7
15ND3 8.5 5.7
15ND3

∗ 5.6

*) van Veldhoven et al. [Eur. Phys. J. D,31, 337 (2005)].
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Gravitational lens PKS 1830-211 (z = 0.89)

The most recent extragalactic ammonia results reported by [C Henkel
et al. A&A, 500, 725 (2009)]. They observed 10 optically thin inversion
lines of NH3 and 5 rotational lines of HC3N from molecular cloud PKS
1830-211 at z = 0.89 (lookback time 7 Gyr). The following three-sigma
limit on µ-variation was obtained:

|δµ/µ| < 1.4× 10−6.
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Molecular clouds in the Milky Way

Emission lines of ammonia are often seen from the cold molecular
clouds in the Galaxy. These lines are typically two orders of magnitude
narrower than for extragalactic sources. This allows to study spatial
variation of µ at the 10−8 level [Levshakov et al. A&A, 512, A44 (2010)]:

∆µ/µ = (2.2± 0.4stat ± 0.3sys)× 10−8.

Most recent result [Levshakov et al. arXiv:1008.1160]:

∆µ/µ = (2.6± 0.1stat ± 0.3sys)× 10−8.
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2009 results from 3 radio telescopes
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2010 result from 100-m Effelsberg telescope
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Molecular cloud L1512
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Chameleon-like scalar field

Non-zero result from the Milky Way corresponds to the timescale of
few hundred years, or the time-variation on the scale of 10−10 yr−1.
This is in sharp contradiction with both laboratory limit [< 10−14 yr−1]
and cosmological limit [< 2× 10−16 yr−1].

Many theoretical models introduce additional scalar field to explain the
cosmological Dark Energy. In Chameleon models such field is
massless in the vacuum but becomes massive in the presence of
matter. This leads to the dependence of fundamental constants on the
local matter density.

The matter density in the molecular clouds is ∼ 105 cm−3, so observed
non-zero variation agrees with prediction of Chameleon models.
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How we can independently test ammonia results?

To test non-zero ammonia results we need to find other transitions with
high sensitivity to µ-variation, which are observed in the interstellar
medium.

Other microwave and infrared transitions with high sensitivity to
µ-variation:

Mixed inversion-rotation transitions in partly deuterated ammonia
NH2D and in hydronium ion H3O+;
Λ-doublet transitions in CH, OH, and in NH+.
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Mixed transitions in NH2D and ND2H

In partly deuterated ammonia inversion lines have different ortho-para
symmetry. Because of that inversion transition goes only in
combination with rotational transitions. For such mixed transitions

ω = ωr ± ωinv ,

and sensitivity coefficients are equal to

Qµ =
ωr

ω
Qr,µ ±

ωinv

ω
Qinv,µ ,

where Qr,µ = 1 and Qinv,µ = 4.7 (NH2D), or Qinv,µ = 5.1 (ND2H).
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Spectrum of NH2D
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Mixed transitions in H3O+

In hydronium ion H3O+ the inversion frequency (55 cm−1) is much
higher, than in ammonia and is comparable to rotational frequencies.
Because of that, there are several “low frequency” mixed transitions
with very high sensitivities of different signs. Some of these transitions
were observed from the interstellar medium.

This is extremely favorable situation for the µ-variation search!
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Inversion frequencies of isotopologues of hydronium
ion and sensitivity to µ-variation
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Sensitivities of mixed transitions of hydronium ion

Transition Frequency Qµ

J K s J ′ K ′ s′ (MHz)

1 1 −1 2 1 +1 307192.410 +9.0
3 2 +1 2 2 −1 364797.427 -5.7
3 1 +1 2 1 −1 388458.641 -5.2
3 0 +1 2 0 −1 396272.412 -5.1
0 0 −1 1 0 +1 984711.907 +3.5
4 3 −1 3 3 +1 1031293.738 -1.4
4 2 −1 3 2 +1 1069826.632 -1.2
3 2 −1 3 2 +1 1621738.993 +2.5
2 1 −1 2 1 +1 1632090.98 +2.5
1 1 −1 1 1 +1 1655833.910 +2.5
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Λ-doublet transitions in OH and CH

In molecules OH and CH electronic spin S is weakly coupled to the
molecular axis for low J and decoupled from the axis for higher J. This
leads to gradual transformation of Ω-doubling into Λ-doubling.

For electronic state Π1/2 of OH molecule and Π3/2 state of CH
molecule transformation of the coupling scheme causes line crossing
and huge enhancement of the sensitivity coefficients Qα and Qµ.
Sensitivity coefficients for two other fine structure levels smoothly
depend on the quantum number J.
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Frequencies of Λ-transitions in OH

Mikhail Kozlov (PNPI) Variations of fundamental constants October 2010 21 / 28



Sensitivities for Λ-transitions in OH
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Frequencies of Λ-transitions in CH
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Sensitivities for Λ-transitions in CH
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Sensitivities for Λ-transitions in CH
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Level structure of NH+ ion (Nice problem!)
[Hûbers et al., Chem. Phys. Lett. 131, 034311 (2009)]

An example of the far-infrared LMR spectrum of NH+,
from the 110.7 �m spectrum in parallel polarization, is
shown in Fig 2. The rotational transitions involved are N
=3←2, J=3 1

2 ←2 1
2 , and F2←F2. There are two distinct sets

of signals, corresponding to the two lambda doublets of the
transition. The lower-field group arises from the +←−, MJ

=−1 1
2 ←−1 1

2 transition and the upper field group from the
−←+, MJ=1 1

2 ←1 1
2 transition; the two groups tune in oppo-

site directions with magnetic field. The hyperfine structures
from both 14N and 1H nuclei are resolved; this can be seen
more clearly in the close up of the scan in Fig 3. There are
four clear examples of nuclear-spin forbidden transitions
��MI�0� in the lower-field lambda doublet. The strong im-
purity signal at 0.52 T arises from the 14NH radical in the
v=2 level of the X 3�− state �N=3←2�.

Figure 4 shows a section of the far-infrared LMR spec-
trum of the 14NH+ radical in the X 2� state recorded with the
295.6 �m spectrum in perpendicular polarization ��MJ

= �1�. The transitions involved are J=1 1
2 ← 1

2 , F1←F1,
+←−, and MJ=−1 1

2 ←− 1
2 . The experimental spectrum is

overlaid with a simulation using the final set of molecular
parameters, determined in a least-squares fit. The lines are
pressure broadened under the experimental conditions so a
Lorentzian line shape with a half width at half maximum
�HWHM� of 5 MHz has been used in the simulation. The
labels above each resonance give the values for the MI quan-
tum number for the 14N and 1H nuclei, respectively. These
values are not completely good because the nuclear spins are
not fully decoupled in the lower, J= 1

2 level which explains
the variation in intensity of the different resonances; the low-
est field resonance arises from two overlapping transitions.
The four sharp resonances at about 0.498 T �marked with
asterisks� arise from the 15NH radical in the v=0 level of the
X 3�− state in natural abundance �0.37%�; the rotational tran-
sition involved is N=1←0. This is an impressive demonstra-
tion of the sensitivity of the LMR technique.

The rotational spectrum of NH+ in its a 4�− state can
also be recorded by far-infrared LMR. Although we did not
intend to do this in our first set of experiments, some signals
from NH+ in its a 4�− state were recorded at the same time
as those for 2� state with the laser line at 81.71 �m. Figure
5 shows a typical example with the full nuclear hyperfine

FIG. 1. Diagram of the lower rotational energy levels of 14NH+ in the
v=0 levels of the X 2� and a 4�− states; the transitions involved in
far-infrared LMR spectrum are shown with their associated wavelengths.
The + and � signs give the parity of the lambda-type �parity� doublets.

FIG. 2. A section of the far-infrared LMR spectrum of the 14NH+ radical in
the v=0 level of the X 2� state. The spectrum was recorded with the
110.7 �m laser in parallel polarisation ��MJ=0�. The rotational transition
involved is N=3←2, J=2 1

2 ←1 1
2 , and F2←F2; both lambda doublets are

observed, as indicated by the parity labels. The low field group arises from
the MJ=−1 1

2 ←−1 1
2 transition and the upper field group arises from the

MJ=1 1
2 ←1 1

2 transition. The hyperfine structures from both 14N and 1H
nuclei are resolved, see Fig 3. The strong impurity signal at 0.52 T arises
from the 14NH radical in the v=2 level of the X 3�− state �N=3←2�.

FIG. 3. A close-up view of the NH+ resonances in the 110.7 �m LMR
spectrum in parallel polarisation ��MJ=0� shown in Fig 2. The rotational
transition involved is N=3←2, J=2 1

2 ←1 1
2 , and F2←F2. The lower-field

group shown in part �a� arises from the MJ=−1 1
2 ←−1 1

2 transition and the
upper field group in �b� arises from the MJ=1 1

2 ←1 1
2 transition. Four tran-

sitions, marked with asterisks, break the nuclear-spin selection rule �MI

=0 in the lower-field lambda doublet. The two central resonances in the
upper field group both consist of two overlapping transitions.

034311-3 The rotational spectrum of the NH+ radical J. Chem. Phys. 131, 034311 �2009�

Downloaded 18 Jun 2010 to 130.132.26.183. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Laboratory reference frequencies

We need laboratory frequency measurements with relative accuracy
10−8 for following transitions:

3.3 GHz, 7.3 GHz, and 720 MHz Λ-doublet lines in CH;
4.8 GHz and 6.0 GHz Λ-doublet lines in OH;
Mixed inversion-rotational lines for NH2D and H3O+;
Rotational lines 21 − 10 for CCS and 1− 0 for N2H+.
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