Лабораторные молекулярные эксперименты по поиску вариации фундаментальных констант

Михаил Г. Козлов

Петербургский институт ядерной физики Отделение нейтронной физики

ВНИИМ, 4 декабря 2008

План доклада

- Фундаментальные константы в атомной физике
 - Безразмерные константы
 - Эксперименты с атомными часами
- 2 Молекулярные эксперименты
 - Эксперимент на пучке SF_6
 - Ультрахолодные двухатомные молекулы
 - Инверсионная линия аммиака
 - Молекулы в астрофизике

3 Заключение

- Выводы
- Соавторы и публикации

Безразмерные фундаментальные постоянные

- Постоянная тонкой структуры α = e²/(ħc) является константой связи в квантовой электродинамике.
- Отношение масс электрона и протона $\mu = m_e/m_p$. Масса протона пропорциональна фундаментальному параметру квантовой хромодинамики Λ_{QCD} , т.е. $\mu \sim m_e/\Lambda_{QCD}$.
- Ядерный g-фактор g_n . В QCD g_n должен выражаться через массы кварков и постоянную Λ_{QCD} , но для атомной физики g_n является независимой постоянной (которая всегда входит в комбинации $g_n\mu$).

- ロ ト - 4 周 ト - 4 回 ト - 5 日 ト - 5 日

Безразмерные коэффициенты чувствительности

Предположим, что фундаментальные постоянные могут меняться. Тогда для частоты произвольного атомного или молекулярного перехода можно написать:

$$\omega = \omega_0 \left[1 + K_\alpha \frac{\delta \alpha}{\alpha} + K_\mu \frac{\delta \mu}{\mu} + K_g \frac{\delta g_n}{g_n} \right],$$

$$\frac{\delta \omega}{\omega} = \frac{\delta F}{F}, \qquad F = \alpha^{K_\alpha} \mu^{K_\mu} g_n^{K_g}.$$

Для того чтобы обнаружить это изменение надо сравнить по крайней мере две частоты:

$$\frac{\omega_i}{\omega_k} = \left(\frac{\omega_i}{\omega_k}\right)_0 \left[1 + \frac{\delta\Phi}{\Phi}\right], \qquad \Phi = \alpha^{\Delta K_\alpha} \mu^{\Delta K_\mu} g_n^{\Delta K_g}.$$

Безразмерные константы Эксперименты с атомными часами

Термы конфигурации **s²p²**

 $(\alpha Z)^2$

A B K A B K

Зависимость спектров атомов и молекул от фундаментальных констант

- Тонкая структура $\sim \alpha^2 \quad \Rightarrow \quad K_{\alpha} \approx 2.$
- Магнитная сверх тонкая структура $\sim \alpha^{2+x} g_n \mu$.
- Колебательная структура $\sim \mu^{1/2}$.
- Вращательная структура $\sim \mu$.
- Инверсионная линия NH_3 (1.2 см) $\sim \mu^{4.46}$.
- Линия **Л**-дублета ОН (18 см) $\sim \alpha^{-2} \mu^3$.

Ограничения из экспериментов с атомными часами

Некоторые недавние ограничения, полученные из сравнения различных атомных часов.

Группа, год		Ограничение	Используемые часы			
$10^{15} imes \dot{lpha} / lpha ext{ yr}^{-1}$						
Rosenband et al.	(2008)	-0.016 ± 0.023	$^{27}\mathrm{Al}^+$	$^{199}\mathrm{Hg}^+$		
Fortier et al.	(2007)	-0.55 ± 0.95	$^{133}\mathrm{Cs}$	$^{199}\mathrm{Hg^{+}}$		
Peik et al.	(2006)	-0.26 ± 0.39	$^{171}\mathrm{Yb^{+}}$	$^{199}\mathrm{Hg}^+$		
Cingöz et al.	(2006)	$-\textbf{2.7}\pm\textbf{2.6}$	$^{163}\mathrm{Dy}$	$^{162}\mathrm{Dy}$		
Fischer et al.	(2004)	-0.9 ± 2.9	Η	$^{199}\mathrm{Hg^{+}}$		
$10^{15} \times \dot{x}/x \text{ yr}^{-1}, x = g_n m_e/m_p$						
Fortier et al.	(2007)	$\textbf{3.0} \pm \textbf{5.7}$	$^{133}\mathrm{Cs}$	$^{199}\mathrm{Hg^{+}}$		

A B K A B K

< 47 ▶

Безразмерные константы Эксперименты с атомными часами

Сравнение лабораторных и астрофизических наблюдений

Характерное время лабораторного эксперимента порядка одного года, тогда как в астрофизике – порядка 10¹⁰ лет.
Точность лабораторных измерений в 10⁹ – 10¹⁰ раз выше.
Лабораторные и астрофизические наблюдения дополняют друг друга: в первых измеряется X/X, во вторых – ΔX/X.
В лабораторных экспериментах лучше изучены возможные систематические ошибки.

A B K A B K

Безразмерные константы Эксперименты с атомными часами

Сравнение лабораторных и астрофизических наблюдений

Характерное время лабораторного эксперимента порядка одного года, тогда как в астрофизике – порядка 10¹⁰ лет.
Точность лабораторных измерений в 10⁹ – 10¹⁰ раз выше.
Лабораторные и астрофизические наблюдения дополняют друг друга: в первых измеряется *X*/*x*, во вторых – Δ*x*/*x*.
В лабораторных экспериментах лучше изучены возможные систематические ошибки.

A B K A B K

Безразмерные константы Эксперименты с атомными часами

Сравнение лабораторных и астрофизических наблюдений

Характерное время лабораторного эксперимента порядка одного года, тогда как в астрофизике – порядка 10¹⁰ лет.
Точность лабораторных измерений в 10⁹ – 10¹⁰ раз выше.
Лабораторные и астрофизические наблюдения дополняют друг друга: в первых измеряется *ẋ/x*, во вторых – Δ*x/x*.
В лабораторных экспериментах лучше изучены возможные систематические ошибки.

Безразмерные константы Эксперименты с атомными часами

Сравнение лабораторных и астрофизических наблюдений

Характерное время лабораторного эксперимента порядка одного года, тогда как в астрофизике – порядка 10¹⁰ лет.
Точность лабораторных измерений в 10⁹ – 10¹⁰ раз выше.
Лабораторные и астрофизические наблюдения дополняют друг друга: в первых измеряется *ẋ/x*, во вторых – Δ*x/x*.
В лабораторных экспериментах лучше изучены возможные систематические ошибки.

Эксперимент на пучке SF₆ Ультрахолодные двухатомные молекулы Инверсионная линия аммиака Молекулы в астрофизике

Эксперимент на SF_6 [A Shelkovnikov et al (2008)].

Двухфотонный колебательный переход в молекуле SF_6 измерялся в сверхзвуковом пучке в эксперименте рамзеевского типа. Частота перехода сравнивалась с цезиевым стандартом. В результате получено ограничение на комбинацию $F = g_n \mu^{-1/2} \alpha^{2.83}$:

$$\dot{F}/F = (1.4 \pm 3.2) \times 10^{-14} \, \mathrm{yr}^{-1}.$$

Объединяя это ограничение с полученными на атомных часах можно получить модельно независимое ограничение на вариацию *µ*:

$$\dot{\mu}/\mu = (3.4\pm 6.5) imes 10^{-14}\,{
m yr}^{-1}$$
 ,

イロト イポト イヨト イヨト 二日

Эксперимент на пучке SF₆ Ул**ьтрахолодные двухатомные молекулы** Инверсионная линия аммиака Молекулы в астрофизике

Эксперимент на Cs₂ [David DeMille]

Ультра холодные молекулы Cs₂ могут быть получены в результате фотоассоциации в атомных ловушках. У Cs₂ имеется очень узкий запрещенный переход ${}^{3}\Sigma_{u}^{+} \rightarrow {}^{1}\Sigma_{a}^{-}$.

Михаил Г. Козлов Поиск вај

Поиск вариации фундаментальных констант

Эксперимент на пучке SF₆ Ультрахолодные друхатомные молекулы Инверсионная линия аммиака Молекулы в астрофизике

Случайные вырождения в молекулярных спектрах.

Михаил Г. Козлов Поиск вариации фундаментальных констант

Эксперимент на пучке SF₆ Ультрахолодные двухатомные молекулы Инверсионная линия аммиака Молекулы в астрофизике

Двухатомные молекулы с основным состоянием ²П_Ω

Тонкое расщепление между уровнями ${}^{2}\Pi_{1/2}$ и ${}^{2}\Pi_{3/2}$ зависит от α :

$$\omega_f \sim \alpha^2 Z^2$$
 Hartree,

а колебательная энергия зависит от $M_r m_p$:

 $\omega_{\rm v} \sim (\mu/M_r)^{1/2}$ Hartree.

Подбирая параметры Z и M_r можно добиться вырождения: $\omega = \omega_f - n\omega_v \approx 0, \quad n = 1, 2, ...$

Зависимость частоты ω от фундаментальных констант дается выражением:

$$\frac{\delta\omega}{\omega} \approx K \left(2 \frac{\delta\alpha}{\alpha} - \frac{1}{2} \frac{\delta\mu}{\mu} \right), \quad K \equiv \frac{\omega_f}{\omega} \gg 1.$$

Эксперимент на пучке SF₆ Ультрахолодные двухатомные молекулы Инверсионная линия аммиака Молекулы в астрофизике

Примеры молекул с квазивырождением частот ω_f и ω_v

Молекула	ω_f	ω_{v}
Cl_2^+	645	645.6
\overline{CuS}	433.4	415
SiBr	423.1	424.3

Чувствительность к вариации фундаментальных констант:

$$\delta\omega = \mathbf{2}\omega_f \left(\frac{\delta\alpha}{\alpha} - \frac{1}{4}\frac{\delta\mu}{\mu}\right)$$

Полагая $\delta \alpha / \alpha \sim 10^{-16}$ и $\omega_f \sim 500 \text{ cm}^{-1}$, мы получаем $\delta \omega \sim 3 \times 10^{-3} \Gamma_{\text{Ц}}$. Естественная ширина приведенных переходов $\Gamma \sim 10^{-2} \Gamma_{\text{Ц}}$.

Эксперимент на пучке SF₆ Ультрахолодные двухатомные молекулы Инверсионная линия аммиака Молекулы в астрофизике

Молекулярный ион HfF⁺

Ион HfF⁺ рассматривается группой Корнелла (JILA) для эксперимента по поиску электрического дипольного момента (ЭДМ) электрона.

В принципе ЭДМ эксперимент и эксперимент по поиску вариации констант похожи, поскольку оба требуют прецизионных измерений частоты.

・ロト ・ 同ト ・ ヨト ・ ヨト

Эксперимент на пучке SF₆ Ультрахолодные двухатомные молекулы Инверсионная линия аммиака Молекулы в астрофизике

Молекулярный ион HfF⁺

Недавно Петров и др (2007) показали, что основное состояние этого иона ${}^{1}\Sigma^{+}$ и первое возбужденное состояние ${}^{3}\Delta_{1}$ отстоят всего на 1633 сm⁻¹. \Rightarrow уровни (${}^{1}\Sigma^{+}$, v = 3) и (${}^{3}\Delta_{1}$, v = 1) очень близки.

Грубая оценка для перехода (${}^1\Sigma^+, \nu = 3$) \rightarrow (${}^3\Delta_1, \nu = 1$) дает:

$$\delta\omega \approx 20000 \text{ cm}^{-1} (\delta\alpha/\alpha - 0.04\delta\mu/\mu),$$

где мы использовали атомное значение параметра q для $6s \rightarrow 5d$ перехода.Этот результат подтверждается молекулярным расчетом Титова и др (2008). Полагая $\delta \alpha / \alpha \sim 10^{-16}$, получаем $\delta \omega \sim 0.06$ Гц.

・ロト ・ 一下 ・ ト ・ 日 ト

Эксперимент на пучке SF₆ Ультрахолодные двухатомные молекулы Инверсионная линия аммиака Молекулы в астрофизике

Инверсионная мода молекулы NH₃

Михаил Г. Козлов Поиск вариации фундаментальных констант

Эксперимент на пучке SF₆ Ультрахолодные двухатомные молекулы Инверсионная линия аммиака Молекулы в астрофизике

Аналитическое решение [Ландау & Лифшиц]

Квазиклассическое приближение для частоты туннелирования дает:

$$\begin{split} \omega_{\rm inv} &= \frac{\omega_v}{\pi} \exp\left(-S\right) \\ &= \frac{\omega_v}{\pi} \exp\left(-\frac{1}{\hbar} \int_{-a}^{a} \sqrt{2M_1(U(x) - E)} dx\right), \\ &\frac{\delta\omega_{\rm inv}}{\omega_{\rm inv}} \approx \frac{\delta\mu}{2\mu} \left(1 + S + \frac{S}{2} \frac{\omega_v}{U_{\rm max} - E}\right) = 4.4 \, \frac{\delta\mu}{\mu}. \end{split}$$

Для ND_3 аналогичный результат был получен в работе van Veldhoven et al. [Eur. Phys. J. D,31, 337 (2005)].

Эксперимент на пучке SF₆ Ультрахолодные двухатомные молекулы Инверсионная линия аммиака Молекулы в астрофизике

Аммиак в астрофизике

Наиболее далекий объект, где наблюдались линии $\rm NH_3$, это галактика $\rm B0218+357$ имеющая красное смещение $z\approx 0.68466$. Это соответствует примерно 6×10^9 лет.

Рис. Инверсионные линии аммиака $\omega_{inv}(J, K)$ [Henkel et al. Astronomy and Astrophysics, 440, 893 (2005)].

Эксперимент на пучке SF₆ Ультрахолодные двухатомные молекулы Инверсионная линия аммиака Молекулы в астрофизике

Ограничение на вариацию *µ* на основании СВЧ спектра галактики В0218+357

Сравнивая видимое красное смещение для NH₃ со средним красным смещением CBЧ линий других молекул (0.68466(1)), определяем сдвиг:

$$\Delta z_{\mathrm{av}}^{\mathrm{unweighted}} = (0.2 \pm 0.9) \times 10^{-5} \,,$$

 $\Delta z_{\mathrm{av}}^{\mathrm{weighted}} = (0.6 \pm 0.9) \times 10^{-5} \,.$

Это дает следующее ограничение на вариацию μ :

 $\delta\mu/\mu = -(0.6 \pm 1.9) \times 10^{-6}.$

(日) (四) (日) (日)

Сравнение тонкой структуры C⁺ и вращательных переходов в CO

Тонкая структура C⁺ чувствительна к вариации α с коэффициентом K = 2, а вращательные переходы CO чувствительны к вариации μ с K = 1. Сравнивая видимые красные смещения этих линий получаем ограничение на вариацию параметра $F = \alpha^2/\mu$. Линия тонкой структуры C⁺ и (6 – 5) переход в CO наблюдались (Maiolino et al. (2005) и Bertoldi et al. (2003)) для квазара с z = 6.42 (время ~ 14 Gyr):

$$\begin{array}{rl} C^+: & z_{\rm fs} & = 6.4189 \pm 0.0006 \,, \\ {\rm CO} \, \left(6-5 \right): & z_{\rm rot} & = 6.4189 \pm 0.0006 \,. \end{array}$$

Это дает:

$$\left|\frac{\Delta F}{F}\right| \le 1.1 \times 10^{-4} \, .$$

Краткие выводы

- Поиски вариации α и μ = m_e/m_p позволяют проверять теории великого объединения.
- Лабораторные эксперименты с молекулами пока уступают атомным экспериментам по точности. Тем не менее они уже дают наиболее жесткое модельно независимое ограничение на µ. Новые эксперименты с ультрахолодными молекулами могут существенно уточнить существующие ограничения.
- Наиболее жесткое ограничение на вариацию µ на космологических временах следует из наблюдений аммиака.
- Сравнение тонкой структуры С II с вращательными линиями СО позволяет получить ограничение на вариацию α^2/μ при z = 6.42.

Выводы Соавторы и публикации

Соавторы

- Виктор Фламбаум [UNSW, Sydney]
- Сергей Порсев [ПИЯФ, Гатчина]
- Сергей Левшаков [ФТИ, Петербург]
- Dieter Reimers [Hamburg University]
- Paolo Molaro [Triest]

Выводы Соавторы и публикации

Публикации

- V F Flambaum & M G Kozlov, Phys.Rev.Lett. 98, 240801 (2007); arXiv: 0704.2301[astro-ph].
- V F Flambaum & M G Kozlov, Phys.Rev.Lett. 99, 150801 (2007); arXiv: 0705.0849[physics.atom-ph].
- S A Levshakov, D Reimers, M G Kozlov, S G Porsev, and P Molaro, Astron. & Astrophys, 479, 719 (2008); arXiv: 0712.2890.